March  2018, 13(1): 95-118. doi: 10.3934/nhm.2018005

On Lennard-Jones systems with finite range interactions and their asymptotic analysis

1. 

TU Dresden, Department of Mathematics, Zellescher Weg 12-14, 01069 Dresden, Germany

2. 

University of Würzburg, Institute of Mathematics, Emil-Fischer-Straẞe 40, 97074 Würzburg, Germany

Received  June 2017 Revised  October 2017 Published  March 2018

The aim of this work is to provide further insight into the qualitative behavior of mechanical systems that are well described by Lennard-Jones type interactions on an atomistic scale. By means of $Γ$-convergence techniques, we study the continuum limit of one-dimensional chains of atoms with finite range interactions of Lennard-Jones type, including the classical Lennard-Jones potentials. So far, explicit formula for the continuum limit were only available for the case of nearest and next-to-nearest neighbour interactions. In this work, we provide an explicit expression for the continuum limit in the case of finite range interactions. The obtained homogenization formula is given by the convexification of a Cauchy-Born energy density.

Furthermore, we study rescaled energies in which bulk and surface contributions scale in the same way. The related discrete-to-continuum limit yields a rigorous derivation of a one-dimensional version of Griffith' fracture energy and thus generalizes earlier derivations for nearest and next-to-nearest neighbors to the case of finite range interactions.

A crucial ingredient to our proofs is a novel decomposition of the energy that allows for refined estimates.

Citation: Mathias Schäffner, Anja Schlömerkemper. On Lennard-Jones systems with finite range interactions and their asymptotic analysis. Networks & Heterogeneous Media, 2018, 13 (1) : 95-118. doi: 10.3934/nhm.2018005
References:
[1] L. AmbrosioN. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Univ. Press, 2000.   Google Scholar
[2]

J. M. Ball, Some open problems in elasticity, In Geometry, Mechanics and Dynamics, Springer, New York, 2002, 3-59  Google Scholar

[3]

X. BlancC. LeBris and P. L. Lions, From molecular models to continuum mechanics, Arch. Ration. Mech. Anal., 164 (2002), 341-381.  doi: 10.1007/s00205-002-0218-5.  Google Scholar

[4] A. Braides, $Γ$-Convergence for Beginners, Oxford Univ. Press, 2002.   Google Scholar
[5]

A. Braides and M. Cicalese, Surface energies in nonconvex discrete systems, Math. Models Methods Appl. Sci., 17 (2007), 985-1037.  doi: 10.1142/S0218202507002182.  Google Scholar

[6]

A. BraidesG. Dal Maso and A. Garroni, Variational formulation of softening phenomena in fracture mechanics: the one-dimensional case, Arch. Rational Mech. Anal., 146 (1999), 23-58.  doi: 10.1007/s002050050135.  Google Scholar

[7]

A. Braides and M. S. Gelli, Continuum limits of discrete systems without convexity hypotheses, Math. Mech. Solids, 7 (2002), 41-66.  doi: 10.1177/1081286502007001229.  Google Scholar

[8]

A. Braides and M. S. Gelli, The passage from discrete to continuous variational problems: A nonlinear homogenization process, in Nonlinear Homogenization and its Applications to Composites, Polycrystals and Smart Materials, NATO Sci. Ser. II Math. Phys. Chem., Kluwer Acad. Publ., Dordrecht, 170 (2004), 45-63.  Google Scholar

[9]

A. Braides and M. S. Gelli, From discrete systems to continuous variational problems: An introduction, Lect. Notes Unione Mat. Ital., 2 (2006), 3-77.   Google Scholar

[10]

A. Braides and M. S. Gelli, Asymptotic analysis of microscopic impenetrability constraints for atomistic systems, J. Mech. Phys. Solids, 96 (2016), 235-251.  doi: 10.1016/j.jmps.2016.07.016.  Google Scholar

[11]

A. BraidesM. S. Gelli and M. Sigalotti, The passage from nonconvex discrete systems to variational problems in Sobolev spaces: The one-dimensional case, Proc. Steklov Inst. Math., 236 (2002), 395-414.   Google Scholar

[12]

A. BraidesA. Lew and M. Ortiz, Effective cohesive behavior of layers of interatomic planes, Arch. Rational Mech. Anal., 180 (2006), 151-182.  doi: 10.1007/s00205-005-0399-9.  Google Scholar

[13]

A. Braides and M. Solci, Asymptotic analysis of Lennard-Jones systems beyond the nearest-neighbour setting: A one-dimensional prototypical case, Math. Mech. Solids, 21 (2016), 915-930.  doi: 10.1177/1081286514544780.  Google Scholar

[14]

A. Braides and L. Truskinovsky, Asymptotic expansions by $Γ$-convergence, Cont. Mech. Thermodyn., 20 (2008), 21-62.  doi: 10.1007/s00161-008-0072-2.  Google Scholar

[15]

M. Friedrich and B. Schmidt, An atomistic-to-continuum analysis of crystal cleavage in a two-dimensional model problem, J. Nonlinear Sci., 24 (2014), 145-183.  doi: 10.1007/s00332-013-9187-0.  Google Scholar

[16]

M. Friedrich and B. Schmidt, An analysis of crystal cleavage in the passage from atomistic models to continuum theory, Arch. Ration. Mech. Anal., 217 (2015), 263-308.  doi: 10.1007/s00205-014-0833-y.  Google Scholar

[17]

M. G. D. GeersR. H. J. PeerlingsM. A. Peletier and L. Scardia, Asymptotic behaviour of a pile-up of infinite walls of edge dislocations, Arch. Ration. Mech. Anal., 209 (2013), 495-539.  doi: 10.1007/s00205-013-0635-7.  Google Scholar

[18]

M. Luskin and C. Ortner, Atomistic-to-continuum coupling, Acta Numer., 22 (2013), 397-508.  doi: 10.1017/S0962492913000068.  Google Scholar

[19]

L. ScardiaA. Schlömerkemper and C. Zanini, Boundary layer energies for nonconvex discrete systems, Math. Models Methods Appl. Sci., 21 (2011), 777-817.  doi: 10.1142/S0218202511005210.  Google Scholar

[20]

L. ScardiaA. Schlömerkemper and C. Zanini, Towards uniformly $Γ$-equivalent theories for nonconvex discrete systems, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 661-686.   Google Scholar

[21]

M. Schäffner and A. Schlömerkemper, On a $Γ$-convergence analysis of a quasicontinuum method, Multiscale Model. Simul., 13 (2015), 132-172.  doi: 10.1137/140971439.  Google Scholar

[22]

M. Schäffner, Multiscale analysis of non-convex discrete systems via $Γ$-convergence, Ph. D thesis, University of Würzburg, 2015. Google Scholar

[23]

E. TadmorM. Ortiz and R. Phillips, Quasicontinuum analysis of defects in solids, Phil. Mag. A, 73 (2006), 1529-1563.  doi: 10.1080/01418619608243000.  Google Scholar

[24]

L. Truskinovsky, Fracture as a phase transition, Contemporary Research in the Mechanics and Mathematics of Marterials, (1996), 322-332.   Google Scholar

show all references

References:
[1] L. AmbrosioN. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Univ. Press, 2000.   Google Scholar
[2]

J. M. Ball, Some open problems in elasticity, In Geometry, Mechanics and Dynamics, Springer, New York, 2002, 3-59  Google Scholar

[3]

X. BlancC. LeBris and P. L. Lions, From molecular models to continuum mechanics, Arch. Ration. Mech. Anal., 164 (2002), 341-381.  doi: 10.1007/s00205-002-0218-5.  Google Scholar

[4] A. Braides, $Γ$-Convergence for Beginners, Oxford Univ. Press, 2002.   Google Scholar
[5]

A. Braides and M. Cicalese, Surface energies in nonconvex discrete systems, Math. Models Methods Appl. Sci., 17 (2007), 985-1037.  doi: 10.1142/S0218202507002182.  Google Scholar

[6]

A. BraidesG. Dal Maso and A. Garroni, Variational formulation of softening phenomena in fracture mechanics: the one-dimensional case, Arch. Rational Mech. Anal., 146 (1999), 23-58.  doi: 10.1007/s002050050135.  Google Scholar

[7]

A. Braides and M. S. Gelli, Continuum limits of discrete systems without convexity hypotheses, Math. Mech. Solids, 7 (2002), 41-66.  doi: 10.1177/1081286502007001229.  Google Scholar

[8]

A. Braides and M. S. Gelli, The passage from discrete to continuous variational problems: A nonlinear homogenization process, in Nonlinear Homogenization and its Applications to Composites, Polycrystals and Smart Materials, NATO Sci. Ser. II Math. Phys. Chem., Kluwer Acad. Publ., Dordrecht, 170 (2004), 45-63.  Google Scholar

[9]

A. Braides and M. S. Gelli, From discrete systems to continuous variational problems: An introduction, Lect. Notes Unione Mat. Ital., 2 (2006), 3-77.   Google Scholar

[10]

A. Braides and M. S. Gelli, Asymptotic analysis of microscopic impenetrability constraints for atomistic systems, J. Mech. Phys. Solids, 96 (2016), 235-251.  doi: 10.1016/j.jmps.2016.07.016.  Google Scholar

[11]

A. BraidesM. S. Gelli and M. Sigalotti, The passage from nonconvex discrete systems to variational problems in Sobolev spaces: The one-dimensional case, Proc. Steklov Inst. Math., 236 (2002), 395-414.   Google Scholar

[12]

A. BraidesA. Lew and M. Ortiz, Effective cohesive behavior of layers of interatomic planes, Arch. Rational Mech. Anal., 180 (2006), 151-182.  doi: 10.1007/s00205-005-0399-9.  Google Scholar

[13]

A. Braides and M. Solci, Asymptotic analysis of Lennard-Jones systems beyond the nearest-neighbour setting: A one-dimensional prototypical case, Math. Mech. Solids, 21 (2016), 915-930.  doi: 10.1177/1081286514544780.  Google Scholar

[14]

A. Braides and L. Truskinovsky, Asymptotic expansions by $Γ$-convergence, Cont. Mech. Thermodyn., 20 (2008), 21-62.  doi: 10.1007/s00161-008-0072-2.  Google Scholar

[15]

M. Friedrich and B. Schmidt, An atomistic-to-continuum analysis of crystal cleavage in a two-dimensional model problem, J. Nonlinear Sci., 24 (2014), 145-183.  doi: 10.1007/s00332-013-9187-0.  Google Scholar

[16]

M. Friedrich and B. Schmidt, An analysis of crystal cleavage in the passage from atomistic models to continuum theory, Arch. Ration. Mech. Anal., 217 (2015), 263-308.  doi: 10.1007/s00205-014-0833-y.  Google Scholar

[17]

M. G. D. GeersR. H. J. PeerlingsM. A. Peletier and L. Scardia, Asymptotic behaviour of a pile-up of infinite walls of edge dislocations, Arch. Ration. Mech. Anal., 209 (2013), 495-539.  doi: 10.1007/s00205-013-0635-7.  Google Scholar

[18]

M. Luskin and C. Ortner, Atomistic-to-continuum coupling, Acta Numer., 22 (2013), 397-508.  doi: 10.1017/S0962492913000068.  Google Scholar

[19]

L. ScardiaA. Schlömerkemper and C. Zanini, Boundary layer energies for nonconvex discrete systems, Math. Models Methods Appl. Sci., 21 (2011), 777-817.  doi: 10.1142/S0218202511005210.  Google Scholar

[20]

L. ScardiaA. Schlömerkemper and C. Zanini, Towards uniformly $Γ$-equivalent theories for nonconvex discrete systems, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 661-686.   Google Scholar

[21]

M. Schäffner and A. Schlömerkemper, On a $Γ$-convergence analysis of a quasicontinuum method, Multiscale Model. Simul., 13 (2015), 132-172.  doi: 10.1137/140971439.  Google Scholar

[22]

M. Schäffner, Multiscale analysis of non-convex discrete systems via $Γ$-convergence, Ph. D thesis, University of Würzburg, 2015. Google Scholar

[23]

E. TadmorM. Ortiz and R. Phillips, Quasicontinuum analysis of defects in solids, Phil. Mag. A, 73 (2006), 1529-1563.  doi: 10.1080/01418619608243000.  Google Scholar

[24]

L. Truskinovsky, Fracture as a phase transition, Contemporary Research in the Mechanics and Mathematics of Marterials, (1996), 322-332.   Google Scholar

[1]

Shuyang Dai, Fengru Wang, Jerry Zhijian Yang, Cheng Yuan. A comparative study of atomistic-based stress evaluation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020322

[2]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[3]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[4]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[5]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[6]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[7]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[8]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[9]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[10]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[11]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[12]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[13]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[14]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (60)
  • HTML views (215)
  • Cited by (2)

Other articles
by authors

[Back to Top]