June  2018, 13(2): 373-378. doi: 10.3934/nhm.2018016

Corrigendum to "(Almost) everything you always wanted to know about deterministic control problems in stratified domains"

Laboratoire de Mathématiques et Physique Théorique (UMR CNRS 7350), Fédération Denis Poisson (FR CNRS 2964), Université François-Rabelais Tours, Parc de Grandmont, 37200 Tours, France

Received  September 2017 Revised  October 2017 Published  May 2018

Fund Project: This work was partially supported by the ANR HJnet ANR-12-BS01-0008-01 and by EU under the 7th Framework Programme Marie Curie Initial Training Network "FP7-PEOPLE-2010-ITN", SADCO project, GA number 264735-SADCO.

The aim of this short note is: $(i)$ to report an error in [1]; $(ii)$ to explain why the comparison result of [1] lacks an hypothesis in the definition of subsolutions if we allow them to be discontinuous; $(iii)$ to describe a simple counter-example; $(iv)$ to show a simple way to correct this mistake, considering the classical Ishii's definition of viscosity solutions; $(v)$ finally, to prove that this modification actually fixes the the comparison and stability results of [1].

Citation: Guy Barles, Emmanuel Chasseigne. Corrigendum to "(Almost) everything you always wanted to know about deterministic control problems in stratified domains". Networks & Heterogeneous Media, 2018, 13 (2) : 373-378. doi: 10.3934/nhm.2018016
References:
[1]

G. Barles and E. Chasseigne, (Almost) Everything you always wanted to know about deterministic control problems in stratified domains, Netw. Heterog. Media, 10 (2015), 809-836.  doi: 10.3934/nhm.2015.10.809.  Google Scholar

[2]

A. Bressan and Y. Hong, Optimal control problems on stratified domains, Netw. Heterog. Media., 2 (2007), 313-331 (electronic) and Errata corrige: Optimal control problems on stratified domains. Netw. Heterog. Media., 8 (2013), p625. doi: 10.3934/nhm.2007.2.313.  Google Scholar

show all references

References:
[1]

G. Barles and E. Chasseigne, (Almost) Everything you always wanted to know about deterministic control problems in stratified domains, Netw. Heterog. Media, 10 (2015), 809-836.  doi: 10.3934/nhm.2015.10.809.  Google Scholar

[2]

A. Bressan and Y. Hong, Optimal control problems on stratified domains, Netw. Heterog. Media., 2 (2007), 313-331 (electronic) and Errata corrige: Optimal control problems on stratified domains. Netw. Heterog. Media., 8 (2013), p625. doi: 10.3934/nhm.2007.2.313.  Google Scholar

[1]

Steven Richardson, Song Wang. The viscosity approximation to the Hamilton-Jacobi-Bellman equation in optimal feedback control: Upper bounds for extended domains. Journal of Industrial & Management Optimization, 2010, 6 (1) : 161-175. doi: 10.3934/jimo.2010.6.161

[2]

Alberto Bressan, Yunho Hong. Optimal control problems on stratified domains. Networks & Heterogeneous Media, 2007, 2 (2) : 313-331. doi: 10.3934/nhm.2007.2.313

[3]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[4]

Guy Barles, Emmanuel Chasseigne. (Almost) Everything you always wanted to know about deterministic control problems in stratified domains. Networks & Heterogeneous Media, 2015, 10 (4) : 809-836. doi: 10.3934/nhm.2015.10.809

[5]

Cristopher Hermosilla. Stratified discontinuous differential equations and sufficient conditions for robustness. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4415-4437. doi: 10.3934/dcds.2015.35.4415

[6]

Rein Luus. Optimal control of oscillatory systems by iterative dynamic programming. Journal of Industrial & Management Optimization, 2008, 4 (1) : 1-15. doi: 10.3934/jimo.2008.4.1

[7]

Giuseppe Maria Coclite, Lorenzo di Ruvo. Discontinuous solutions for the generalized short pulse equation. Evolution Equations & Control Theory, 2019, 8 (4) : 737-753. doi: 10.3934/eect.2019036

[8]

Jean-Claude Zambrini. On the geometry of the Hamilton-Jacobi-Bellman equation. Journal of Geometric Mechanics, 2009, 1 (3) : 369-387. doi: 10.3934/jgm.2009.1.369

[9]

Roberta Ghezzi, Benedetto Piccoli. Optimal control of a multi-level dynamic model for biofuel production. Mathematical Control & Related Fields, 2017, 7 (2) : 235-257. doi: 10.3934/mcrf.2017008

[10]

B. M. Adams, H. T. Banks, Hee-Dae Kwon, Hien T. Tran. Dynamic Multidrug Therapies for HIV: Optimal and STI Control Approaches. Mathematical Biosciences & Engineering, 2004, 1 (2) : 223-241. doi: 10.3934/mbe.2004.1.223

[11]

Boris Andreianov, Kenneth H. Karlsen, Nils H. Risebro. On vanishing viscosity approximation of conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2010, 5 (3) : 617-633. doi: 10.3934/nhm.2010.5.617

[12]

Pierpaolo Soravia. Existence of absolute minimizers for noncoercive Hamiltonians and viscosity solutions of the Aronsson equation. Mathematical Control & Related Fields, 2012, 2 (4) : 399-427. doi: 10.3934/mcrf.2012.2.399

[13]

Jingyu Li, Chuangchuang Liang. Viscosity dominated limit of global solutions to a hyperbolic equation in MEMS. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 833-849. doi: 10.3934/dcds.2016.36.833

[14]

Gang Li, Fen Gu, Feida Jiang. Positive viscosity solutions of a third degree homogeneous parabolic infinity Laplace equation. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1449-1462. doi: 10.3934/cpaa.2020071

[15]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[16]

Minzilia A. Sagadeeva, Sophiya A. Zagrebina, Natalia A. Manakova. Optimal control of solutions of a multipoint initial-final problem for non-autonomous evolutionary Sobolev type equation. Evolution Equations & Control Theory, 2019, 8 (3) : 473-488. doi: 10.3934/eect.2019023

[17]

Anya Désilles, Hélène Frankowska. Explicit construction of solutions to the Burgers equation with discontinuous initial-boundary conditions. Networks & Heterogeneous Media, 2013, 8 (3) : 727-744. doi: 10.3934/nhm.2013.8.727

[18]

Tianliang Hou, Yanping Chen. Superconvergence for elliptic optimal control problems discretized by RT1 mixed finite elements and linear discontinuous elements. Journal of Industrial & Management Optimization, 2013, 9 (3) : 631-642. doi: 10.3934/jimo.2013.9.631

[19]

Konstantinos Chrysafinos, Efthimios N. Karatzas. Symmetric error estimates for discontinuous Galerkin approximations for an optimal control problem associated to semilinear parabolic PDE's. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1473-1506. doi: 10.3934/dcdsb.2012.17.1473

[20]

Daniele Castorina, Annalisa Cesaroni, Luca Rossi. On a parabolic Hamilton-Jacobi-Bellman equation degenerating at the boundary. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1251-1263. doi: 10.3934/cpaa.2016.15.1251

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (73)
  • HTML views (161)
  • Cited by (0)

Other articles
by authors

[Back to Top]