
-
Previous Article
Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth
- NHM Home
- This Issue
-
Next Article
Perturbations of minimizing movements and curves of maximal slope
Traveling wave profiles for a Follow-the-Leader model for traffic flow with rough road condition
Mathematics Department, Pennsylvania State University, University Park, PA 16802, USA |
We study a Follow-the-Leader (FtL) ODE model for traffic flow with rough road condition, and analyze stationary traveling wave profiles where the solutions of the FtL model trace along, near the jump in the road condition. We derive a discontinuous delay differential equation (DDDE) for these profiles. For various cases, we obtain results on existence, uniqueness and local stability of the profiles. The results here offer an alternative approximation, possibly more realistic than the classical vanishing viscosity approach, to the conservation law with discontinuous flux for traffic flow.
References:
[1] |
B. Andreianov, New approaches to describing admissibility of solutions of scalar conservation
laws with discontinuous flux, CANUM 2014—42e Congrès National d'Analyse Numérique,
ESAIM Proc. Surveys, EDP Sci., Les Ulis, 50 (2015), 40–65.
doi: 10.1051/proc/201550003. |
[2] |
J. Aubin,
Macroscopic traffic models: Shifting from densities to "celerities", Appl. Math. Comput, 217 (2010), 963-971.
doi: 10.1016/j.amc.2010.02.032. |
[3] |
N. Bellomo, A. Bellouquid, J. Nieto and J. Soler,
On the multiscale modeling of vehicular traffic: From kinetic to hydrodynamics, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1869-1888.
doi: 10.3934/dcdsb.2014.19.1869. |
[4] |
A. Bressan,
Unique solutions for a class of discontinuous differential equations, Proc. Amer. Math. Soc., 104 (1988), 772-778.
doi: 10.1090/S0002-9939-1988-0964856-0. |
[5] |
A. Bressan and W. Shen,
Uniqueness for discontinuous ODE and conservation laws, Nonlinear Anal, 34 (1998), 637-652.
doi: 10.1016/S0362-546X(97)00590-7. |
[6] |
A. Bressan and W. Shen,
Unique solutions of discontinuous O.D.E.'s in Banach spaces, Anal. Appl. (Singap.), 4 (2006), 247-262.
doi: 10.1142/S0219530506000772. |
[7] |
R. M. Colombo and E. Rossi,
On the micro-macro limit in traffic flow, Rend. Semin. Mat. Univ. Padova, 131 (2014), 217-235.
doi: 10.4171/RSMUP/131-13. |
[8] |
A. Corli, L. di Ruvo, L. Malaguti and M. D. Rosini,
Traveling waves for degenerate diffusive equations on networks, Netw. Heterog. Media, 12 (2017), 339-370.
doi: 10.3934/nhm.2017015. |
[9] |
E. Cristiani and S. Sahu,
On the micro-to-macro limit for first-order traffic flow models on networks, Netw. Heterog. Media, 11 (2016), 395-413.
doi: 10.3934/nhm.2016002. |
[10] |
M. Di Francesco and M. D. Rosini,
Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Arch. Ration. Mech. Anal., 217 (2015), 831-871.
doi: 10.1007/s00205-015-0843-4. |
[11] |
R. D. Driver and M. D. Rosini,
Existence and stability of solutions of a delay-differential system, Arch. Rational Mech. Anal., 10 (1962), 401-426.
doi: 10.1007/BF00281203. |
[12] |
R. D. Driver,
Ordinary and Delay Differential Equations, Applied Mathematical Sciences, 20 Springer-Verlag, New York-Heidelberg, 1977. |
[13] |
A. F. Filippov,
Differential Equations with Discontinuous Righthand Sides, Mathematics and its Applications (Soviet Series), 18, Kluwer Academic Publishers Group, Dordrecht, 1988.
doi: 10.1007/978-94-015-7793-9. |
[14] |
T. Gimse and N. H. Risebro, Riemann problems with a discontinuous flux function, Third International Conference on Hyperbolic Problems, Vol. I, II, 488–502, Studentlitteratur, Lund,
1990. |
[15] |
G. Guerra and W. Shen,
Vanishing viscosity solutions of riemann problems for models in polymer flooding, Non-Linear Partial Differential Equations, Mathematical Physics, and Stochastic Analysis, (2017), 261-285.
doi: 10.4171/186-1/12. |
[16] |
H. Holden and N. H. Risebro,
Continuum limit of Follow-the-Leader models - a short proof, To appear in DCDS, 38 (2018), 715-722.
doi: 10.3934/dcds.2018031. |
[17] |
H. Holden and N. H. Risebro, Follow-the-Leader models can be viewed as a numerical approximation to the Lighthill-Whitham-Richards model for traffic flow, Networks & Heterogeneous Media, 13 (2018). |
[18] |
M. J. Lighthill and G. B. Whitham,
On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317-345.
doi: 10.1098/rspa.1955.0089. |
[19] |
E. Rossi,
A justification of a LWR model based on a follow the leader description, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 579-591.
doi: 10.3934/dcdss.2014.7.579. |
[20] |
W. Shen, On the uniqueness of vanishing viscosity solutions for Riemann problems for polymer flooding,
NoDEA Nonlinear Differential Equations Appl., 24 (2017), Art. 37, 25pp.
doi: 10.1007/s00030-017-0461-y. |
[21] |
W. Shen, Scilab codes for simulations and plots used in this paper www.personal.psu.edu/wxs27/SIM/Traffic-DDDE, 2017. |
[22] |
W. Shen and K. Shikh-Khalil,
Traveling waves for a microscopic model of traffic flow, Discrete
and Continuous Dynamical Systems, 38 (2018), 2571-2589.
doi: 10.3934/dcds.2018108. |
show all references
References:
[1] |
B. Andreianov, New approaches to describing admissibility of solutions of scalar conservation
laws with discontinuous flux, CANUM 2014—42e Congrès National d'Analyse Numérique,
ESAIM Proc. Surveys, EDP Sci., Les Ulis, 50 (2015), 40–65.
doi: 10.1051/proc/201550003. |
[2] |
J. Aubin,
Macroscopic traffic models: Shifting from densities to "celerities", Appl. Math. Comput, 217 (2010), 963-971.
doi: 10.1016/j.amc.2010.02.032. |
[3] |
N. Bellomo, A. Bellouquid, J. Nieto and J. Soler,
On the multiscale modeling of vehicular traffic: From kinetic to hydrodynamics, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1869-1888.
doi: 10.3934/dcdsb.2014.19.1869. |
[4] |
A. Bressan,
Unique solutions for a class of discontinuous differential equations, Proc. Amer. Math. Soc., 104 (1988), 772-778.
doi: 10.1090/S0002-9939-1988-0964856-0. |
[5] |
A. Bressan and W. Shen,
Uniqueness for discontinuous ODE and conservation laws, Nonlinear Anal, 34 (1998), 637-652.
doi: 10.1016/S0362-546X(97)00590-7. |
[6] |
A. Bressan and W. Shen,
Unique solutions of discontinuous O.D.E.'s in Banach spaces, Anal. Appl. (Singap.), 4 (2006), 247-262.
doi: 10.1142/S0219530506000772. |
[7] |
R. M. Colombo and E. Rossi,
On the micro-macro limit in traffic flow, Rend. Semin. Mat. Univ. Padova, 131 (2014), 217-235.
doi: 10.4171/RSMUP/131-13. |
[8] |
A. Corli, L. di Ruvo, L. Malaguti and M. D. Rosini,
Traveling waves for degenerate diffusive equations on networks, Netw. Heterog. Media, 12 (2017), 339-370.
doi: 10.3934/nhm.2017015. |
[9] |
E. Cristiani and S. Sahu,
On the micro-to-macro limit for first-order traffic flow models on networks, Netw. Heterog. Media, 11 (2016), 395-413.
doi: 10.3934/nhm.2016002. |
[10] |
M. Di Francesco and M. D. Rosini,
Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Arch. Ration. Mech. Anal., 217 (2015), 831-871.
doi: 10.1007/s00205-015-0843-4. |
[11] |
R. D. Driver and M. D. Rosini,
Existence and stability of solutions of a delay-differential system, Arch. Rational Mech. Anal., 10 (1962), 401-426.
doi: 10.1007/BF00281203. |
[12] |
R. D. Driver,
Ordinary and Delay Differential Equations, Applied Mathematical Sciences, 20 Springer-Verlag, New York-Heidelberg, 1977. |
[13] |
A. F. Filippov,
Differential Equations with Discontinuous Righthand Sides, Mathematics and its Applications (Soviet Series), 18, Kluwer Academic Publishers Group, Dordrecht, 1988.
doi: 10.1007/978-94-015-7793-9. |
[14] |
T. Gimse and N. H. Risebro, Riemann problems with a discontinuous flux function, Third International Conference on Hyperbolic Problems, Vol. I, II, 488–502, Studentlitteratur, Lund,
1990. |
[15] |
G. Guerra and W. Shen,
Vanishing viscosity solutions of riemann problems for models in polymer flooding, Non-Linear Partial Differential Equations, Mathematical Physics, and Stochastic Analysis, (2017), 261-285.
doi: 10.4171/186-1/12. |
[16] |
H. Holden and N. H. Risebro,
Continuum limit of Follow-the-Leader models - a short proof, To appear in DCDS, 38 (2018), 715-722.
doi: 10.3934/dcds.2018031. |
[17] |
H. Holden and N. H. Risebro, Follow-the-Leader models can be viewed as a numerical approximation to the Lighthill-Whitham-Richards model for traffic flow, Networks & Heterogeneous Media, 13 (2018). |
[18] |
M. J. Lighthill and G. B. Whitham,
On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317-345.
doi: 10.1098/rspa.1955.0089. |
[19] |
E. Rossi,
A justification of a LWR model based on a follow the leader description, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 579-591.
doi: 10.3934/dcdss.2014.7.579. |
[20] |
W. Shen, On the uniqueness of vanishing viscosity solutions for Riemann problems for polymer flooding,
NoDEA Nonlinear Differential Equations Appl., 24 (2017), Art. 37, 25pp.
doi: 10.1007/s00030-017-0461-y. |
[21] |
W. Shen, Scilab codes for simulations and plots used in this paper www.personal.psu.edu/wxs27/SIM/Traffic-DDDE, 2017. |
[22] |
W. Shen and K. Shikh-Khalil,
Traveling waves for a microscopic model of traffic flow, Discrete
and Continuous Dynamical Systems, 38 (2018), 2571-2589.
doi: 10.3934/dcds.2018108. |











[1] |
Wen Shen, Karim Shikh-Khalil. Traveling waves for a microscopic model of traffic flow. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2571-2589. doi: 10.3934/dcds.2018108 |
[2] |
Wen Shen. Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads. Networks and Heterogeneous Media, 2019, 14 (4) : 709-732. doi: 10.3934/nhm.2019028 |
[3] |
Johanna Ridder, Wen Shen. Traveling waves for nonlocal models of traffic flow. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4001-4040. doi: 10.3934/dcds.2019161 |
[4] |
Matteo Piu, Gabriella Puppo. Stability analysis of microscopic models for traffic flow with lane changing. Networks and Heterogeneous Media, 2022 doi: 10.3934/nhm.2022006 |
[5] |
Gabriella Puppo, Matteo Semplice, Andrea Tosin, Giuseppe Visconti. Kinetic models for traffic flow resulting in a reduced space of microscopic velocities. Kinetic and Related Models, 2017, 10 (3) : 823-854. doi: 10.3934/krm.2017033 |
[6] |
Dan Stanescu, Benito Chen-Charpentier. Random coefficient differential equation models for Monod kinetics. Conference Publications, 2009, 2009 (Special) : 719-728. doi: 10.3934/proc.2009.2009.719 |
[7] |
Felisia Angela Chiarello, Paola Goatin. Non-local multi-class traffic flow models. Networks and Heterogeneous Media, 2019, 14 (2) : 371-387. doi: 10.3934/nhm.2019015 |
[8] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, 2021, 29 (4) : 2599-2618. doi: 10.3934/era.2021003 |
[9] |
Tong Li, Jeungeun Park. Stability of traveling waves of models for image processing with non-convex nonlinearity. Communications on Pure and Applied Analysis, 2018, 17 (3) : 959-985. doi: 10.3934/cpaa.2018047 |
[10] |
John M. Hong, Cheng-Hsiung Hsu, Bo-Chih Huang, Tzi-Sheng Yang. Geometric singular perturbation approach to the existence and instability of stationary waves for viscous traffic flow models. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1501-1526. doi: 10.3934/cpaa.2013.12.1501 |
[11] |
Jan Friedrich, Oliver Kolb, Simone Göttlich. A Godunov type scheme for a class of LWR traffic flow models with non-local flux. Networks and Heterogeneous Media, 2018, 13 (4) : 531-547. doi: 10.3934/nhm.2018024 |
[12] |
Eugen Stumpf. Local stability analysis of differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3445-3461. doi: 10.3934/dcds.2016.36.3445 |
[13] |
Zhao-Xing Yang, Guo-Bao Zhang, Ge Tian, Zhaosheng Feng. Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 581-603. doi: 10.3934/dcdss.2017029 |
[14] |
Shi-Liang Wu, Wan-Tong Li, San-Yang Liu. Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 347-366. doi: 10.3934/dcdsb.2012.17.347 |
[15] |
Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads. Networks and Heterogeneous Media, 2015, 10 (2) : 255-293. doi: 10.3934/nhm.2015.10.255 |
[16] |
Tong Li. Qualitative analysis of some PDE models of traffic flow. Networks and Heterogeneous Media, 2013, 8 (3) : 773-781. doi: 10.3934/nhm.2013.8.773 |
[17] |
Paola Goatin. Traffic flow models with phase transitions on road networks. Networks and Heterogeneous Media, 2009, 4 (2) : 287-301. doi: 10.3934/nhm.2009.4.287 |
[18] |
Michael Herty, Lorenzo Pareschi. Fokker-Planck asymptotics for traffic flow models. Kinetic and Related Models, 2010, 3 (1) : 165-179. doi: 10.3934/krm.2010.3.165 |
[19] |
Hao Zhang, Hirofumi Izuhara, Yaping Wu. Asymptotic stability of two types of traveling waves for some predator-prey models. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2323-2342. doi: 10.3934/dcdsb.2021046 |
[20] |
Abraham Solar. Stability of non-monotone and backward waves for delay non-local reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5799-5823. doi: 10.3934/dcds.2019255 |
2021 Impact Factor: 1.41
Tools
Metrics
Other articles
by authors
[Back to Top]