September  2018, 13(3): 479-491. doi: 10.3934/nhm.2018021

Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth

1. 

Department of Financial Engineering, Ajou University, Suwon, Korea

2. 

Manufacturing Technology Center, Samsung Electronics, Giheung, Korea

3. 

Department of Mathematics, Seoul National University, Seoul 08826, Republic of Korea

* Corresponding author: Yeonghun Youn

Received  November 2017 Revised  March 2018 Published  July 2018

We consider weak solutions to the equations of stationary motion of a class of non-Newtonian fluids which includes the power law model. The power depends on the spatial variable, which is motivated by electrorheological fluids. We prove the existence of second order derivatives of weak solutions in the shear thinning cases.

Citation: Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks and Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021
References:
[1]

E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal., 164 (2002), 213-259.  doi: 10.1007/s00205-002-0208-7.

[2]

R. A. Adams, Sobolev Spaces, Academic Press, New York-London, 1975.

[3]

D. ApushkinskayaM. Bildhauer and M. Fuchs, Steady states of anisotropic generalized Newtonian fluids, J. Math. Fluid Mech., 7 (2005), 261-297.  doi: 10.1007/s00021-004-0118-6.

[4]

H. Beirão da Veiga, Navier-Stokes Equations with shear-thickening viscosity. Regularity up to the boundary, J. Math. Fluid Mech., 11 (2009), 233-257.  doi: 10.1007/s00021-008-0257-2.

[5]

M. BildhauerM. Fuchs and X. Zhong, On strong solutions of the differential equations modeling the steady flow of certain incompressible generalized Newtonian fluids, Algebra i Analiz, 18 (2006), 1-23.  doi: 10.1090/S1061-0022-07-00948-X.

[6]

S.-S. Byun and J. Ok, On $W^{1, q(·)}$-estimates for elliptic equations of $p(x)$-Laplacian type, J. Math. Pures Appl., 106 (2016), 512-545.  doi: 10.1016/j.matpur.2016.03.002.

[7]

S. Challal and A. Lyaghfouri, Second order regularity for the $p(x)$-Laplace operator, Math. Nachr., 284 (2011), 1270-1279.  doi: 10.1002/mana.200810285.

[8]

F. Crispo and C. R. Grisanti, On the $C^{1, γ}(\bar{Ω}) \cap W^{2, 2} (Ω)$ regularity for a class of electro-rheological fluids, J. Math. Anal. Appl., 356 (2009), 119-132.  doi: 10.1016/j.jmaa.2009.02.013.

[9]

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-18363-8.

[10]

L. Diening and M. Růžička, An existence result for non-Newtonian fluids in non-regular domains, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 255-268.  doi: 10.3934/dcdss.2010.3.255.

[11]

F. Ettwein and M. Růžička, Existence of local strong solutions for motions of electrorheological fluids in three dimensions, Comput. Math. Appl., 53 (2007), 595-604.  doi: 10.1016/j.camwa.2006.02.032.

[12]

L. C. Evans, Partial Differential Equations, 2$^{nd}$ edition, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019.

[13]

J. FrehseJ. Málek and M. Steinhauer, On analysis of steady flows of fluids with shear-dependent viscosity based on the Lipschitz truncation method, SIAM J. Math. Anal., 34 (2003), 1064-1083.  doi: 10.1137/S0036141002410988.

[14]

P. KaplickýJ. Málek and J. Stará, $C^{1, α}$-solutions to a class of nonlinear fluids in two dimensions-stationary Dirichlet problem, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 259 (1999), 89-121.  doi: 10.1023/A:1014440207817.

[15]

J. Naumann and J. Wolf, Interior differentiability of weak solutions to the equations of stationary motion of a class of non-Newtonian fluids, J. Math. Fluid Mech., 7 (2005), 298-313.  doi: 10.1007/s00021-004-0120-z.

[16]

M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2000.

show all references

References:
[1]

E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal., 164 (2002), 213-259.  doi: 10.1007/s00205-002-0208-7.

[3]

D. ApushkinskayaM. Bildhauer and M. Fuchs, Steady states of anisotropic generalized Newtonian fluids, J. Math. Fluid Mech., 7 (2005), 261-297.  doi: 10.1007/s00021-004-0118-6.

[4]

H. Beirão da Veiga, Navier-Stokes Equations with shear-thickening viscosity. Regularity up to the boundary, J. Math. Fluid Mech., 11 (2009), 233-257.  doi: 10.1007/s00021-008-0257-2.

[5]

M. BildhauerM. Fuchs and X. Zhong, On strong solutions of the differential equations modeling the steady flow of certain incompressible generalized Newtonian fluids, Algebra i Analiz, 18 (2006), 1-23.  doi: 10.1090/S1061-0022-07-00948-X.

[6]

S.-S. Byun and J. Ok, On $W^{1, q(·)}$-estimates for elliptic equations of $p(x)$-Laplacian type, J. Math. Pures Appl., 106 (2016), 512-545.  doi: 10.1016/j.matpur.2016.03.002.

[7]

S. Challal and A. Lyaghfouri, Second order regularity for the $p(x)$-Laplace operator, Math. Nachr., 284 (2011), 1270-1279.  doi: 10.1002/mana.200810285.

[8]

F. Crispo and C. R. Grisanti, On the $C^{1, γ}(\bar{Ω}) \cap W^{2, 2} (Ω)$ regularity for a class of electro-rheological fluids, J. Math. Anal. Appl., 356 (2009), 119-132.  doi: 10.1016/j.jmaa.2009.02.013.

[9]

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-18363-8.

[10]

L. Diening and M. Růžička, An existence result for non-Newtonian fluids in non-regular domains, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 255-268.  doi: 10.3934/dcdss.2010.3.255.

[11]

F. Ettwein and M. Růžička, Existence of local strong solutions for motions of electrorheological fluids in three dimensions, Comput. Math. Appl., 53 (2007), 595-604.  doi: 10.1016/j.camwa.2006.02.032.

[12]

L. C. Evans, Partial Differential Equations, 2$^{nd}$ edition, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019.

[13]

J. FrehseJ. Málek and M. Steinhauer, On analysis of steady flows of fluids with shear-dependent viscosity based on the Lipschitz truncation method, SIAM J. Math. Anal., 34 (2003), 1064-1083.  doi: 10.1137/S0036141002410988.

[14]

P. KaplickýJ. Málek and J. Stará, $C^{1, α}$-solutions to a class of nonlinear fluids in two dimensions-stationary Dirichlet problem, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 259 (1999), 89-121.  doi: 10.1023/A:1014440207817.

[15]

J. Naumann and J. Wolf, Interior differentiability of weak solutions to the equations of stationary motion of a class of non-Newtonian fluids, J. Math. Fluid Mech., 7 (2005), 298-313.  doi: 10.1007/s00021-004-0120-z.

[16]

M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2000.

[1]

Marilena Filippucci, Andrea Tallarico, Michele Dragoni. Simulation of lava flows with power-law rheology. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 677-685. doi: 10.3934/dcdss.2013.6.677

[2]

José A. Carrillo, Yanghong Huang. Explicit equilibrium solutions for the aggregation equation with power-law potentials. Kinetic and Related Models, 2017, 10 (1) : 171-192. doi: 10.3934/krm.2017007

[3]

Frank Jochmann. Power-law approximation of Bean's critical-state model with displacement current. Conference Publications, 2011, 2011 (Special) : 747-753. doi: 10.3934/proc.2011.2011.747

[4]

Xin Zhong. Global strong solution to the nonhomogeneous micropolar fluid equations with large initial data and vacuum. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021296

[5]

Asim Aziz, Wasim Jamshed. Unsteady MHD slip flow of non Newtonian power-law nanofluid over a moving surface with temperature dependent thermal conductivity. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 617-630. doi: 10.3934/dcdss.2018036

[6]

Jinbo Geng, Xiaochun Chen, Sadek Gala. On regularity criteria for the 3D magneto-micropolar fluid equations in the critical Morrey-Campanato space. Communications on Pure and Applied Analysis, 2011, 10 (2) : 583-592. doi: 10.3934/cpaa.2011.10.583

[7]

Hiroshi Inoue, Kei Matsuura, Mitsuharu Ôtani. Strong solutions of magneto-micropolar fluid equation. Conference Publications, 2003, 2003 (Special) : 439-448. doi: 10.3934/proc.2003.2003.439

[8]

Anouar Bahrouni, VicenŢiu D. RĂdulescu. On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent. Discrete and Continuous Dynamical Systems - S, 2018, 11 (3) : 379-389. doi: 10.3934/dcdss.2018021

[9]

Yukun Song, Yang Chen, Jun Yan, Shuai Chen. The existence of solutions for a shear thinning compressible non-Newtonian models. Electronic Research Archive, 2020, 28 (1) : 47-66. doi: 10.3934/era.2020004

[10]

Alberto Gambaruto, João Janela, Alexandra Moura, Adélia Sequeira. Shear-thinning effects of hemodynamics in patient-specific cerebral aneurysms. Mathematical Biosciences & Engineering, 2013, 10 (3) : 649-665. doi: 10.3934/mbe.2013.10.649

[11]

Jean-Jérôme Casanova. Existence of time-periodic strong solutions to a fluid–structure system. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3291-3313. doi: 10.3934/dcds.2019136

[12]

Francesca Bucci, Irena Lasiecka. Regularity of boundary traces for a fluid-solid interaction model. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 505-521. doi: 10.3934/dcdss.2011.4.505

[13]

Zhi-Ying Sun, Lan Huang, Xin-Guang Yang. Exponential stability and regularity of compressible viscous micropolar fluid with cylinder symmetry. Electronic Research Archive, 2020, 28 (2) : 861-878. doi: 10.3934/era.2020045

[14]

Lingbing He. On the global smooth solution to 2-D fluid/particle system. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 237-263. doi: 10.3934/dcds.2010.27.237

[15]

Lan Huang, Zhiying Sun, Xin-Guang Yang, Alain Miranville. Global behavior for the classical solution of compressible viscous micropolar fluid with cylinder symmetry. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1595-1620. doi: 10.3934/cpaa.2022033

[16]

Yunfei Yuan, Changchun Liu. Optimal control for the coupled chemotaxis-fluid models in two space dimensions. Electronic Research Archive, 2021, 29 (6) : 4269-4296. doi: 10.3934/era.2021085

[17]

Tao Wang. One dimensional $p$-th power Newtonian fluid with temperature-dependent thermal conductivity. Communications on Pure and Applied Analysis, 2016, 15 (2) : 477-494. doi: 10.3934/cpaa.2016.15.477

[18]

Jong Yeoul Park, Jae Ug Jeong. Pullback attractors for a $2D$-non-autonomous incompressible non-Newtonian fluid with variable delays. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2687-2702. doi: 10.3934/dcdsb.2016068

[19]

Kengo Nakai, Yoshitaka Saiki. Machine-learning construction of a model for a macroscopic fluid variable using the delay-coordinate of a scalar observable. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1079-1092. doi: 10.3934/dcdss.2020352

[20]

P. Kaplický, Dalibor Pražák. Lyapunov exponents and the dimension of the attractor for 2d shear-thinning incompressible flow. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 961-974. doi: 10.3934/dcds.2008.20.961

2020 Impact Factor: 1.213

Metrics

  • PDF downloads (264)
  • HTML views (206)
  • Cited by (0)

Other articles
by authors

[Back to Top]