September  2018, 13(3): 479-491. doi: 10.3934/nhm.2018021

Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth

1. 

Department of Financial Engineering, Ajou University, Suwon, Korea

2. 

Manufacturing Technology Center, Samsung Electronics, Giheung, Korea

3. 

Department of Mathematics, Seoul National University, Seoul 08826, Republic of Korea

* Corresponding author: Yeonghun Youn

Received  November 2017 Revised  March 2018 Published  July 2018

We consider weak solutions to the equations of stationary motion of a class of non-Newtonian fluids which includes the power law model. The power depends on the spatial variable, which is motivated by electrorheological fluids. We prove the existence of second order derivatives of weak solutions in the shear thinning cases.

Citation: Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021
References:
[1]

E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal., 164 (2002), 213-259.  doi: 10.1007/s00205-002-0208-7.  Google Scholar

[2]

R. A. Adams, Sobolev Spaces, Academic Press, New York-London, 1975.  Google Scholar

[3]

D. ApushkinskayaM. Bildhauer and M. Fuchs, Steady states of anisotropic generalized Newtonian fluids, J. Math. Fluid Mech., 7 (2005), 261-297.  doi: 10.1007/s00021-004-0118-6.  Google Scholar

[4]

H. Beirão da Veiga, Navier-Stokes Equations with shear-thickening viscosity. Regularity up to the boundary, J. Math. Fluid Mech., 11 (2009), 233-257.  doi: 10.1007/s00021-008-0257-2.  Google Scholar

[5]

M. BildhauerM. Fuchs and X. Zhong, On strong solutions of the differential equations modeling the steady flow of certain incompressible generalized Newtonian fluids, Algebra i Analiz, 18 (2006), 1-23.  doi: 10.1090/S1061-0022-07-00948-X.  Google Scholar

[6]

S.-S. Byun and J. Ok, On $W^{1, q(·)}$-estimates for elliptic equations of $p(x)$-Laplacian type, J. Math. Pures Appl., 106 (2016), 512-545.  doi: 10.1016/j.matpur.2016.03.002.  Google Scholar

[7]

S. Challal and A. Lyaghfouri, Second order regularity for the $p(x)$-Laplace operator, Math. Nachr., 284 (2011), 1270-1279.  doi: 10.1002/mana.200810285.  Google Scholar

[8]

F. Crispo and C. R. Grisanti, On the $C^{1, γ}(\bar{Ω}) \cap W^{2, 2} (Ω)$ regularity for a class of electro-rheological fluids, J. Math. Anal. Appl., 356 (2009), 119-132.  doi: 10.1016/j.jmaa.2009.02.013.  Google Scholar

[9]

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-18363-8.  Google Scholar

[10]

L. Diening and M. Růžička, An existence result for non-Newtonian fluids in non-regular domains, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 255-268.  doi: 10.3934/dcdss.2010.3.255.  Google Scholar

[11]

F. Ettwein and M. Růžička, Existence of local strong solutions for motions of electrorheological fluids in three dimensions, Comput. Math. Appl., 53 (2007), 595-604.  doi: 10.1016/j.camwa.2006.02.032.  Google Scholar

[12]

L. C. Evans, Partial Differential Equations, 2$^{nd}$ edition, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019.  Google Scholar

[13]

J. FrehseJ. Málek and M. Steinhauer, On analysis of steady flows of fluids with shear-dependent viscosity based on the Lipschitz truncation method, SIAM J. Math. Anal., 34 (2003), 1064-1083.  doi: 10.1137/S0036141002410988.  Google Scholar

[14]

P. KaplickýJ. Málek and J. Stará, $C^{1, α}$-solutions to a class of nonlinear fluids in two dimensions-stationary Dirichlet problem, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 259 (1999), 89-121.  doi: 10.1023/A:1014440207817.  Google Scholar

[15]

J. Naumann and J. Wolf, Interior differentiability of weak solutions to the equations of stationary motion of a class of non-Newtonian fluids, J. Math. Fluid Mech., 7 (2005), 298-313.  doi: 10.1007/s00021-004-0120-z.  Google Scholar

[16]

M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2000.  Google Scholar

show all references

References:
[1]

E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal., 164 (2002), 213-259.  doi: 10.1007/s00205-002-0208-7.  Google Scholar

[3]

D. ApushkinskayaM. Bildhauer and M. Fuchs, Steady states of anisotropic generalized Newtonian fluids, J. Math. Fluid Mech., 7 (2005), 261-297.  doi: 10.1007/s00021-004-0118-6.  Google Scholar

[4]

H. Beirão da Veiga, Navier-Stokes Equations with shear-thickening viscosity. Regularity up to the boundary, J. Math. Fluid Mech., 11 (2009), 233-257.  doi: 10.1007/s00021-008-0257-2.  Google Scholar

[5]

M. BildhauerM. Fuchs and X. Zhong, On strong solutions of the differential equations modeling the steady flow of certain incompressible generalized Newtonian fluids, Algebra i Analiz, 18 (2006), 1-23.  doi: 10.1090/S1061-0022-07-00948-X.  Google Scholar

[6]

S.-S. Byun and J. Ok, On $W^{1, q(·)}$-estimates for elliptic equations of $p(x)$-Laplacian type, J. Math. Pures Appl., 106 (2016), 512-545.  doi: 10.1016/j.matpur.2016.03.002.  Google Scholar

[7]

S. Challal and A. Lyaghfouri, Second order regularity for the $p(x)$-Laplace operator, Math. Nachr., 284 (2011), 1270-1279.  doi: 10.1002/mana.200810285.  Google Scholar

[8]

F. Crispo and C. R. Grisanti, On the $C^{1, γ}(\bar{Ω}) \cap W^{2, 2} (Ω)$ regularity for a class of electro-rheological fluids, J. Math. Anal. Appl., 356 (2009), 119-132.  doi: 10.1016/j.jmaa.2009.02.013.  Google Scholar

[9]

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-18363-8.  Google Scholar

[10]

L. Diening and M. Růžička, An existence result for non-Newtonian fluids in non-regular domains, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 255-268.  doi: 10.3934/dcdss.2010.3.255.  Google Scholar

[11]

F. Ettwein and M. Růžička, Existence of local strong solutions for motions of electrorheological fluids in three dimensions, Comput. Math. Appl., 53 (2007), 595-604.  doi: 10.1016/j.camwa.2006.02.032.  Google Scholar

[12]

L. C. Evans, Partial Differential Equations, 2$^{nd}$ edition, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019.  Google Scholar

[13]

J. FrehseJ. Málek and M. Steinhauer, On analysis of steady flows of fluids with shear-dependent viscosity based on the Lipschitz truncation method, SIAM J. Math. Anal., 34 (2003), 1064-1083.  doi: 10.1137/S0036141002410988.  Google Scholar

[14]

P. KaplickýJ. Málek and J. Stará, $C^{1, α}$-solutions to a class of nonlinear fluids in two dimensions-stationary Dirichlet problem, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 259 (1999), 89-121.  doi: 10.1023/A:1014440207817.  Google Scholar

[15]

J. Naumann and J. Wolf, Interior differentiability of weak solutions to the equations of stationary motion of a class of non-Newtonian fluids, J. Math. Fluid Mech., 7 (2005), 298-313.  doi: 10.1007/s00021-004-0120-z.  Google Scholar

[16]

M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2000.  Google Scholar

[1]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[2]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[3]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[4]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[5]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[6]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[7]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[8]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[9]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[10]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[11]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[12]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[13]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[14]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[15]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[16]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

[17]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[18]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[19]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[20]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (119)
  • HTML views (199)
  • Cited by (0)

Other articles
by authors

[Back to Top]