September  2018, 13(3): 515-530. doi: 10.3934/nhm.2018023

SIR Rumor spreading model with trust rate distribution

1. 

Department of Applied Mathematics and the Institute of Natural Sciences, Kyung Hee University, Yongin, 446-701, Korea

2. 

Department of Mathematics, Incheon National University, Incheon, 406-772, Korea

* Corresponding author: Sun-Ho Choi

Received  December 2017 Revised  March 2018 Published  July 2018

Fund Project: The research of B. I. Hong and S.-H. Choi was supported by Korea Electric Power Corporation(Grant number:R18XA02)

In this paper, we study a rumor spreading model in which several types of ignorants exist with trust rate distributions $λ_i $, $≤ i≤ N$. We rigorously show the existence of a threshold on a momentum type initial quantity related to rumor outbreak occurrence regardless of the total initial population. We employ a steady state analysis to obtain the final size of the rumor. Using numerical simulations, we demonstrate the analytical result in which the threshold phenomenon exists for rumor size and discuss interaction between the ignorants of several types of trust rates.

Citation: Bum Il Hong, Nahmwoo Hahm, Sun-Ho Choi. SIR Rumor spreading model with trust rate distribution. Networks & Heterogeneous Media, 2018, 13 (3) : 515-530. doi: 10.3934/nhm.2018023
References:
[1]

P. Bordia and N. DiFonzo, Problem solving in social interactions on the Internet: Rumor as social cognition, Social Psychology Quarterly, 67 (2004), 33-49. doi: 10.1177/019027250406700105. Google Scholar

[2]

G. Chen, H. Shen, T. Ye, G. Chen and N. Kerr, A kinetic model for the spread of rumor in emergencies, Discrete Dynamics in Nature and Society, 2013 (2013), Art. ID 605854, 8 pp. Google Scholar

[3]

D. J. Daley and D. G. Kendall, Epidemics and rumours, Nature, 204 (1964), 1118. doi: 10.1038/2041118a0. Google Scholar

[4]

D. J. Daley and D. G. Kendall, Stochastic rumours, IMA Journal of Applied Mathematics, 1 (1965), 42-55. doi: 10.1093/imamat/1.1.42. Google Scholar

[5]

N. Fountoulakis, K. Panagiotou and T. Sauerwald, Ultra-fast rumor spreading in social networks, Proceedings of the Twenty-Third Annual ACM-SIAM symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, 2012, 1642–1660. doi: 10.1137/1.9781611973099.130. Google Scholar

[6]

J. GuW. Li and X. Cai, The effect of the forget-remember mechanism on spreading, European Physical Journal B, 62 (2008), 247-255. doi: 10.1140/epjb/e2008-00139-4. Google Scholar

[7]

V. IshamS. Harden and M. Nekovee, Stochastic epidemics and rumours on finite random networks, Physica A, 389 (2010), 561-576. doi: 10.1016/j.physa.2009.10.001. Google Scholar

[8]

M. E. JaegerS. Anthony and R. L. Rosnow, Who hears what from whom and with what effect:A study of rumor, Personality and Social Psychology Bulletin, 6 (1980), 473-478. Google Scholar

[9]

J. JiangS. Gong and B. He, Dynamical behavior of a rumor transmission model with Holling-type Ⅱ functional response in emergency event, Physica A, 450 (2016), 228-240. doi: 10.1016/j.physa.2015.12.143. Google Scholar

[10]

A. J. Kimmel and A.-F. Audrain-Pontevia, Analysis of commercial rumors from the perspective of marketing managers: Rumor prevalence, effects, and control tactics, Journal of Marketing Communications, 16 (2010), 239-253. doi: 10.1080/13527260902884433. Google Scholar

[11]

D. Maki and M. Thomson, Mathematical Models and Applications, Prentice-Hall, Englewood Cliffs, 1973. Google Scholar

[12]

M. McDonald, O. Suleman, S. Williams, S. Howison and N. F. Johnson, Impact of unexpected events, shocking news, and rumors on foreign exchange market dynamics, Physical Review E, 77 (2008), 046110. doi: 10.1103/PhysRevE.77.046110. Google Scholar

[13]

Y. Moreno, M. Nekovee and A. Pacheco, Dynamics of rumor spreading in complex networks, Physical Review E, 69 (2004), 066130. doi: 10.1103/PhysRevE.69.066130. Google Scholar

[14]

M. Nagao, K. Suto and A. Ohuchi, A media information analysis for implementing effective countermeasure against harmful rumor, Journal of Physics, Conference Series, 221 (2010), 012004. doi: 10.1088/1742-6596/221/1/012004. Google Scholar

[15]

M. NekoveeY. MorenoG. Bianconi and M. Marsili, Theory of rumour spreading in complex social networks, Physica A, 374 (2007), 457-470. doi: 10.1016/j.physa.2006.07.017. Google Scholar

[16]

R. L. RosnowJ. H. Yost and J. L. Esposito, Belief in rumor and likelihood of rumor transmission, Language & Communication, 6 (1986), 189-194. doi: 10.1016/0271-5309(86)90022-4. Google Scholar

[17]

A. Sudbury, The proportion of population never hearing a rumour, Journal of Applied Probability, 22 (1985), 443-446. doi: 10.2307/3213787. Google Scholar

[18]

S. A. Thomas, Lies, damn lies, and rumors: An analysis of collective efficacy, rumors, and fear in the wake of Katrina, Sociological Spectrum, 27 (2007), 679-703. doi: 10.1080/02732170701534200. Google Scholar

[19]

Y.-Q. WangX.-Y. YangY.-L. Han and X.-A. Wang, Rumor Spreading Model with Trust Mechanism in Complex Social Networks, Communications in Theoretical Physics, 59 (2013), 510-516. Google Scholar

[20]

J. WangL. Zhao and R. Huang, 2SI2R rumor spreading model in homogeneous networks, Physica A, 413 (2014), 153-161. doi: 10.1016/j.physa.2014.06.053. Google Scholar

[21]

D. J. Watts and S. H. Strogatz, Collective dynamics of small-world networks, Nature, 393 (1998), 440-442. Google Scholar

[22]

Y. ZanJ. WuaP. Li and Q. Yua, SICR rumor spreading model in complex networks: Counterattack and self-resistance, Physica A, 405 (2014), 159-170. doi: 10.1016/j.physa.2014.03.021. Google Scholar

[23]

D. H. Zanette, Critical behavior of propagation on small-world networks, Physical Review E, 64 (2001), 050901. doi: 10.1103/PhysRevE.64.050901. Google Scholar

[24]

D. H. Zanette, Dynamics of rumor propagation on small-world networks, Physical Review E, 65 (2002), 041908. doi: 10.1103/PhysRevE.65.041908. Google Scholar

[25]

L. ZhaoH. CuiX. QiuX. Wang and J. Wang, SIR rumor spreading model in the new media age, Physica A, 392 (2013), 995-1003. doi: 10.1016/j.physa.2012.09.030. Google Scholar

[26]

L. ZhaoJ. WangY. ChenQ. WangJ. Cheng and H. Cui, SIHR rumor spreading model in social networks, Physica A, 391 (2012), 2444-2453. Google Scholar

[27]

L. ZhaoQ. WangJ. ChengY. ChenJ. Wang and W. Huang, Rumor spreading model with consideration of forgetting mechanism: A case of online blogging LiveJournal, Physica A, 390 (2011), 2619-2625. doi: 10.1016/j.physa.2011.03.010. Google Scholar

[28]

L. ZhaoW. XieH. O. GaoX. QiuX. Wang and S. Zhang, A rumor spreading model with variable forgetting rate, Physica A, 392 (2013), 6146-6154. doi: 10.1016/j.physa.2013.07.080. Google Scholar

[29]

L. ZhuH. Zhao and H. Wang, Complex dynamic behavior of a rumor propagation model with spatial-temporal diffusion terms, Information Sciences, 349/350 (2016), 119-136. doi: 10.1016/j.ins.2016.02.031. Google Scholar

show all references

References:
[1]

P. Bordia and N. DiFonzo, Problem solving in social interactions on the Internet: Rumor as social cognition, Social Psychology Quarterly, 67 (2004), 33-49. doi: 10.1177/019027250406700105. Google Scholar

[2]

G. Chen, H. Shen, T. Ye, G. Chen and N. Kerr, A kinetic model for the spread of rumor in emergencies, Discrete Dynamics in Nature and Society, 2013 (2013), Art. ID 605854, 8 pp. Google Scholar

[3]

D. J. Daley and D. G. Kendall, Epidemics and rumours, Nature, 204 (1964), 1118. doi: 10.1038/2041118a0. Google Scholar

[4]

D. J. Daley and D. G. Kendall, Stochastic rumours, IMA Journal of Applied Mathematics, 1 (1965), 42-55. doi: 10.1093/imamat/1.1.42. Google Scholar

[5]

N. Fountoulakis, K. Panagiotou and T. Sauerwald, Ultra-fast rumor spreading in social networks, Proceedings of the Twenty-Third Annual ACM-SIAM symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, 2012, 1642–1660. doi: 10.1137/1.9781611973099.130. Google Scholar

[6]

J. GuW. Li and X. Cai, The effect of the forget-remember mechanism on spreading, European Physical Journal B, 62 (2008), 247-255. doi: 10.1140/epjb/e2008-00139-4. Google Scholar

[7]

V. IshamS. Harden and M. Nekovee, Stochastic epidemics and rumours on finite random networks, Physica A, 389 (2010), 561-576. doi: 10.1016/j.physa.2009.10.001. Google Scholar

[8]

M. E. JaegerS. Anthony and R. L. Rosnow, Who hears what from whom and with what effect:A study of rumor, Personality and Social Psychology Bulletin, 6 (1980), 473-478. Google Scholar

[9]

J. JiangS. Gong and B. He, Dynamical behavior of a rumor transmission model with Holling-type Ⅱ functional response in emergency event, Physica A, 450 (2016), 228-240. doi: 10.1016/j.physa.2015.12.143. Google Scholar

[10]

A. J. Kimmel and A.-F. Audrain-Pontevia, Analysis of commercial rumors from the perspective of marketing managers: Rumor prevalence, effects, and control tactics, Journal of Marketing Communications, 16 (2010), 239-253. doi: 10.1080/13527260902884433. Google Scholar

[11]

D. Maki and M. Thomson, Mathematical Models and Applications, Prentice-Hall, Englewood Cliffs, 1973. Google Scholar

[12]

M. McDonald, O. Suleman, S. Williams, S. Howison and N. F. Johnson, Impact of unexpected events, shocking news, and rumors on foreign exchange market dynamics, Physical Review E, 77 (2008), 046110. doi: 10.1103/PhysRevE.77.046110. Google Scholar

[13]

Y. Moreno, M. Nekovee and A. Pacheco, Dynamics of rumor spreading in complex networks, Physical Review E, 69 (2004), 066130. doi: 10.1103/PhysRevE.69.066130. Google Scholar

[14]

M. Nagao, K. Suto and A. Ohuchi, A media information analysis for implementing effective countermeasure against harmful rumor, Journal of Physics, Conference Series, 221 (2010), 012004. doi: 10.1088/1742-6596/221/1/012004. Google Scholar

[15]

M. NekoveeY. MorenoG. Bianconi and M. Marsili, Theory of rumour spreading in complex social networks, Physica A, 374 (2007), 457-470. doi: 10.1016/j.physa.2006.07.017. Google Scholar

[16]

R. L. RosnowJ. H. Yost and J. L. Esposito, Belief in rumor and likelihood of rumor transmission, Language & Communication, 6 (1986), 189-194. doi: 10.1016/0271-5309(86)90022-4. Google Scholar

[17]

A. Sudbury, The proportion of population never hearing a rumour, Journal of Applied Probability, 22 (1985), 443-446. doi: 10.2307/3213787. Google Scholar

[18]

S. A. Thomas, Lies, damn lies, and rumors: An analysis of collective efficacy, rumors, and fear in the wake of Katrina, Sociological Spectrum, 27 (2007), 679-703. doi: 10.1080/02732170701534200. Google Scholar

[19]

Y.-Q. WangX.-Y. YangY.-L. Han and X.-A. Wang, Rumor Spreading Model with Trust Mechanism in Complex Social Networks, Communications in Theoretical Physics, 59 (2013), 510-516. Google Scholar

[20]

J. WangL. Zhao and R. Huang, 2SI2R rumor spreading model in homogeneous networks, Physica A, 413 (2014), 153-161. doi: 10.1016/j.physa.2014.06.053. Google Scholar

[21]

D. J. Watts and S. H. Strogatz, Collective dynamics of small-world networks, Nature, 393 (1998), 440-442. Google Scholar

[22]

Y. ZanJ. WuaP. Li and Q. Yua, SICR rumor spreading model in complex networks: Counterattack and self-resistance, Physica A, 405 (2014), 159-170. doi: 10.1016/j.physa.2014.03.021. Google Scholar

[23]

D. H. Zanette, Critical behavior of propagation on small-world networks, Physical Review E, 64 (2001), 050901. doi: 10.1103/PhysRevE.64.050901. Google Scholar

[24]

D. H. Zanette, Dynamics of rumor propagation on small-world networks, Physical Review E, 65 (2002), 041908. doi: 10.1103/PhysRevE.65.041908. Google Scholar

[25]

L. ZhaoH. CuiX. QiuX. Wang and J. Wang, SIR rumor spreading model in the new media age, Physica A, 392 (2013), 995-1003. doi: 10.1016/j.physa.2012.09.030. Google Scholar

[26]

L. ZhaoJ. WangY. ChenQ. WangJ. Cheng and H. Cui, SIHR rumor spreading model in social networks, Physica A, 391 (2012), 2444-2453. Google Scholar

[27]

L. ZhaoQ. WangJ. ChengY. ChenJ. Wang and W. Huang, Rumor spreading model with consideration of forgetting mechanism: A case of online blogging LiveJournal, Physica A, 390 (2011), 2619-2625. doi: 10.1016/j.physa.2011.03.010. Google Scholar

[28]

L. ZhaoW. XieH. O. GaoX. QiuX. Wang and S. Zhang, A rumor spreading model with variable forgetting rate, Physica A, 392 (2013), 6146-6154. doi: 10.1016/j.physa.2013.07.080. Google Scholar

[29]

L. ZhuH. Zhao and H. Wang, Complex dynamic behavior of a rumor propagation model with spatial-temporal diffusion terms, Information Sciences, 349/350 (2016), 119-136. doi: 10.1016/j.ins.2016.02.031. Google Scholar

Figure 1.  Temporal evolution of $\phi(t)$ with respect to $\delta$ and the plot of $F(\phi)$
Figure 2.  Temporal evolution of the densities $S(t)$ and $R(t)$ with respect to $\delta$
Figure 3.  The final size of the rumor $\phi^\infty$ with respect to $\delta$
[1]

Wan-Tong Li, Guo Lin, Cong Ma, Fei-Ying Yang. Traveling wave solutions of a nonlocal delayed SIR model without outbreak threshold. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 467-484. doi: 10.3934/dcdsb.2014.19.467

[2]

Min Zhu, Xiaofei Guo, Zhigui Lin. The risk index for an SIR epidemic model and spatial spreading of the infectious disease. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1565-1583. doi: 10.3934/mbe.2017081

[3]

Zhen Jin, Zhien Ma. The stability of an SIR epidemic model with time delays. Mathematical Biosciences & Engineering, 2006, 3 (1) : 101-109. doi: 10.3934/mbe.2006.3.101

[4]

C. Connell McCluskey. Global stability of an $SIR$ epidemic model with delay and general nonlinear incidence. Mathematical Biosciences & Engineering, 2010, 7 (4) : 837-850. doi: 10.3934/mbe.2010.7.837

[5]

Deqiong Ding, Wendi Qin, Xiaohua Ding. Lyapunov functions and global stability for a discretized multigroup SIR epidemic model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1971-1981. doi: 10.3934/dcdsb.2015.20.1971

[6]

E. Almaraz, A. Gómez-Corral. On SIR-models with Markov-modulated events: Length of an outbreak, total size of the epidemic and number of secondary infections. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2153-2176. doi: 10.3934/dcdsb.2018229

[7]

Mei Li, Zhigui Lin. The spreading fronts in a mutualistic model with advection. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2089-2105. doi: 10.3934/dcdsb.2015.20.2089

[8]

Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya. Global stability for a class of discrete SIR epidemic models. Mathematical Biosciences & Engineering, 2010, 7 (2) : 347-361. doi: 10.3934/mbe.2010.7.347

[9]

Gary Bunting, Yihong Du, Krzysztof Krakowski. Spreading speed revisited: Analysis of a free boundary model. Networks & Heterogeneous Media, 2012, 7 (4) : 583-603. doi: 10.3934/nhm.2012.7.583

[10]

Alan J. Terry. Pulse vaccination strategies in a metapopulation SIR model. Mathematical Biosciences & Engineering, 2010, 7 (2) : 455-477. doi: 10.3934/mbe.2010.7.455

[11]

Tomás Caraballo, Renato Colucci. A comparison between random and stochastic modeling for a SIR model. Communications on Pure & Applied Analysis, 2017, 16 (1) : 151-162. doi: 10.3934/cpaa.2017007

[12]

Qianqian Cui, Zhipeng Qiu, Ling Ding. An SIR epidemic model with vaccination in a patchy environment. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1141-1157. doi: 10.3934/mbe.2017059

[13]

Yan Li, Wan-Tong Li, Guo Lin. Traveling waves of a delayed diffusive SIR epidemic model. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1001-1022. doi: 10.3934/cpaa.2015.14.1001

[14]

Manjun Ma, Xiao-Qiang Zhao. Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 591-606. doi: 10.3934/dcdsb.2016.21.591

[15]

Stelian Ion, Gabriela Marinoschi. A self-organizing criticality mathematical model for contamination and epidemic spreading. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 383-405. doi: 10.3934/dcdsb.2017018

[16]

Shujing Gao, Dehui Xie, Lansun Chen. Pulse vaccination strategy in a delayed sir epidemic model with vertical transmission. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 77-86. doi: 10.3934/dcdsb.2007.7.77

[17]

Masaki Sekiguchi, Emiko Ishiwata, Yukihiko Nakata. Dynamics of an ultra-discrete SIR epidemic model with time delay. Mathematical Biosciences & Engineering, 2018, 15 (3) : 653-666. doi: 10.3934/mbe.2018029

[18]

Xia Wang, Shengqiang Liu. Global properties of a delayed SIR epidemic model with multiple parallel infectious stages. Mathematical Biosciences & Engineering, 2012, 9 (3) : 685-695. doi: 10.3934/mbe.2012.9.685

[19]

Wanbiao Ma, Yasuhiro Takeuchi. Asymptotic properties of a delayed SIR epidemic model with density dependent birth rate. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 671-678. doi: 10.3934/dcdsb.2004.4.671

[20]

Haomin Huang, Mingxin Wang. The reaction-diffusion system for an SIR epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2039-2050. doi: 10.3934/dcdsb.2015.20.2039

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (47)
  • HTML views (188)
  • Cited by (0)

Other articles
by authors

[Back to Top]