
- Previous Article
- NHM Home
- This Issue
-
Next Article
Crystalline evolutions in chessboard-like microstructures
SIR Rumor spreading model with trust rate distribution
1. | Department of Applied Mathematics and the Institute of Natural Sciences, Kyung Hee University, Yongin, 446-701, Korea |
2. | Department of Mathematics, Incheon National University, Incheon, 406-772, Korea |
In this paper, we study a rumor spreading model in which several types of ignorants exist with trust rate distributions $λ_i $, $≤ i≤ N$. We rigorously show the existence of a threshold on a momentum type initial quantity related to rumor outbreak occurrence regardless of the total initial population. We employ a steady state analysis to obtain the final size of the rumor. Using numerical simulations, we demonstrate the analytical result in which the threshold phenomenon exists for rumor size and discuss interaction between the ignorants of several types of trust rates.
References:
[1] |
P. Bordia and N. DiFonzo,
Problem solving in social interactions on the Internet: Rumor as social cognition, Social Psychology Quarterly, 67 (2004), 33-49.
doi: 10.1177/019027250406700105. |
[2] |
G. Chen, H. Shen, T. Ye, G. Chen and N. Kerr, A kinetic model for the spread of rumor in emergencies,
Discrete Dynamics in Nature and Society, 2013 (2013), Art. ID 605854, 8 pp. |
[3] |
D. J. Daley and D. G. Kendall, Epidemics and rumours,
Nature, 204 (1964), 1118.
doi: 10.1038/2041118a0. |
[4] |
D. J. Daley and D. G. Kendall,
Stochastic rumours, IMA Journal of Applied Mathematics, 1 (1965), 42-55.
doi: 10.1093/imamat/1.1.42. |
[5] |
N. Fountoulakis, K. Panagiotou and T. Sauerwald, Ultra-fast rumor spreading in social networks, Proceedings of the Twenty-Third Annual ACM-SIAM symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, 2012, 1642–1660.
doi: 10.1137/1.9781611973099.130. |
[6] |
J. Gu, W. Li and X. Cai,
The effect of the forget-remember mechanism on spreading, European Physical Journal B, 62 (2008), 247-255.
doi: 10.1140/epjb/e2008-00139-4. |
[7] |
V. Isham, S. Harden and M. Nekovee,
Stochastic epidemics and rumours on finite random networks, Physica A, 389 (2010), 561-576.
doi: 10.1016/j.physa.2009.10.001. |
[8] |
M. E. Jaeger, S. Anthony and R. L. Rosnow, Who hears what from whom and with what effect:A study of rumor, Personality and Social Psychology Bulletin, 6 (1980), 473-478. Google Scholar |
[9] |
J. Jiang, S. Gong and B. He,
Dynamical behavior of a rumor transmission model with Holling-type Ⅱ functional response in emergency event, Physica A, 450 (2016), 228-240.
doi: 10.1016/j.physa.2015.12.143. |
[10] |
A. J. Kimmel and A.-F. Audrain-Pontevia,
Analysis of commercial rumors from the perspective of marketing managers: Rumor prevalence, effects, and control tactics, Journal of Marketing Communications, 16 (2010), 239-253.
doi: 10.1080/13527260902884433. |
[11] |
D. Maki and M. Thomson,
Mathematical Models and Applications, Prentice-Hall, Englewood Cliffs, 1973. |
[12] |
M. McDonald, O. Suleman, S. Williams, S. Howison and N. F. Johnson, Impact of unexpected events, shocking news, and rumors on foreign exchange market dynamics,
Physical Review E, 77 (2008), 046110.
doi: 10.1103/PhysRevE.77.046110. |
[13] |
Y. Moreno, M. Nekovee and A. Pacheco, Dynamics of rumor spreading in complex networks,
Physical Review E, 69 (2004), 066130.
doi: 10.1103/PhysRevE.69.066130. |
[14] |
M. Nagao, K. Suto and A. Ohuchi, A media information analysis for implementing effective countermeasure against harmful rumor,
Journal of Physics, Conference Series, 221 (2010), 012004.
doi: 10.1088/1742-6596/221/1/012004. |
[15] |
M. Nekovee, Y. Moreno, G. Bianconi and M. Marsili,
Theory of rumour spreading in complex social networks, Physica A, 374 (2007), 457-470.
doi: 10.1016/j.physa.2006.07.017. |
[16] |
R. L. Rosnow, J. H. Yost and J. L. Esposito,
Belief in rumor and likelihood of rumor transmission, Language & Communication, 6 (1986), 189-194.
doi: 10.1016/0271-5309(86)90022-4. |
[17] |
A. Sudbury,
The proportion of population never hearing a rumour, Journal of Applied Probability, 22 (1985), 443-446.
doi: 10.2307/3213787. |
[18] |
S. A. Thomas,
Lies, damn lies, and rumors: An analysis of collective efficacy, rumors, and fear in the wake of Katrina, Sociological Spectrum, 27 (2007), 679-703.
doi: 10.1080/02732170701534200. |
[19] |
Y.-Q. Wang, X.-Y. Yang, Y.-L. Han and X.-A. Wang, Rumor Spreading Model with Trust Mechanism in Complex Social Networks, Communications in Theoretical Physics, 59 (2013), 510-516. Google Scholar |
[20] |
J. Wang, L. Zhao and R. Huang,
2SI2R rumor spreading model in homogeneous networks, Physica A, 413 (2014), 153-161.
doi: 10.1016/j.physa.2014.06.053. |
[21] |
D. J. Watts and S. H. Strogatz, Collective dynamics of small-world networks, Nature, 393 (1998), 440-442. Google Scholar |
[22] |
Y. Zan, J. Wua, P. Li and Q. Yua,
SICR rumor spreading model in complex networks: Counterattack and self-resistance, Physica A, 405 (2014), 159-170.
doi: 10.1016/j.physa.2014.03.021. |
[23] |
D. H. Zanette, Critical behavior of propagation on small-world networks,
Physical Review E, 64 (2001), 050901.
doi: 10.1103/PhysRevE.64.050901. |
[24] |
D. H. Zanette, Dynamics of rumor propagation on small-world networks,
Physical Review E, 65 (2002), 041908.
doi: 10.1103/PhysRevE.65.041908. |
[25] |
L. Zhao, H. Cui, X. Qiu, X. Wang and J. Wang,
SIR rumor spreading model in the new media age, Physica A, 392 (2013), 995-1003.
doi: 10.1016/j.physa.2012.09.030. |
[26] |
L. Zhao, J. Wang, Y. Chen, Q. Wang, J. Cheng and H. Cui, SIHR rumor spreading model in social networks, Physica A, 391 (2012), 2444-2453. Google Scholar |
[27] |
L. Zhao, Q. Wang, J. Cheng, Y. Chen, J. Wang and W. Huang,
Rumor spreading model with consideration of forgetting mechanism: A case of online blogging LiveJournal, Physica A, 390 (2011), 2619-2625.
doi: 10.1016/j.physa.2011.03.010. |
[28] |
L. Zhao, W. Xie, H. O. Gao, X. Qiu, X. Wang and S. Zhang,
A rumor spreading model with variable forgetting rate, Physica A, 392 (2013), 6146-6154.
doi: 10.1016/j.physa.2013.07.080. |
[29] |
L. Zhu, H. Zhao and H. Wang,
Complex dynamic behavior of a rumor propagation model with spatial-temporal diffusion terms, Information Sciences, 349/350 (2016), 119-136.
doi: 10.1016/j.ins.2016.02.031. |
show all references
References:
[1] |
P. Bordia and N. DiFonzo,
Problem solving in social interactions on the Internet: Rumor as social cognition, Social Psychology Quarterly, 67 (2004), 33-49.
doi: 10.1177/019027250406700105. |
[2] |
G. Chen, H. Shen, T. Ye, G. Chen and N. Kerr, A kinetic model for the spread of rumor in emergencies,
Discrete Dynamics in Nature and Society, 2013 (2013), Art. ID 605854, 8 pp. |
[3] |
D. J. Daley and D. G. Kendall, Epidemics and rumours,
Nature, 204 (1964), 1118.
doi: 10.1038/2041118a0. |
[4] |
D. J. Daley and D. G. Kendall,
Stochastic rumours, IMA Journal of Applied Mathematics, 1 (1965), 42-55.
doi: 10.1093/imamat/1.1.42. |
[5] |
N. Fountoulakis, K. Panagiotou and T. Sauerwald, Ultra-fast rumor spreading in social networks, Proceedings of the Twenty-Third Annual ACM-SIAM symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, 2012, 1642–1660.
doi: 10.1137/1.9781611973099.130. |
[6] |
J. Gu, W. Li and X. Cai,
The effect of the forget-remember mechanism on spreading, European Physical Journal B, 62 (2008), 247-255.
doi: 10.1140/epjb/e2008-00139-4. |
[7] |
V. Isham, S. Harden and M. Nekovee,
Stochastic epidemics and rumours on finite random networks, Physica A, 389 (2010), 561-576.
doi: 10.1016/j.physa.2009.10.001. |
[8] |
M. E. Jaeger, S. Anthony and R. L. Rosnow, Who hears what from whom and with what effect:A study of rumor, Personality and Social Psychology Bulletin, 6 (1980), 473-478. Google Scholar |
[9] |
J. Jiang, S. Gong and B. He,
Dynamical behavior of a rumor transmission model with Holling-type Ⅱ functional response in emergency event, Physica A, 450 (2016), 228-240.
doi: 10.1016/j.physa.2015.12.143. |
[10] |
A. J. Kimmel and A.-F. Audrain-Pontevia,
Analysis of commercial rumors from the perspective of marketing managers: Rumor prevalence, effects, and control tactics, Journal of Marketing Communications, 16 (2010), 239-253.
doi: 10.1080/13527260902884433. |
[11] |
D. Maki and M. Thomson,
Mathematical Models and Applications, Prentice-Hall, Englewood Cliffs, 1973. |
[12] |
M. McDonald, O. Suleman, S. Williams, S. Howison and N. F. Johnson, Impact of unexpected events, shocking news, and rumors on foreign exchange market dynamics,
Physical Review E, 77 (2008), 046110.
doi: 10.1103/PhysRevE.77.046110. |
[13] |
Y. Moreno, M. Nekovee and A. Pacheco, Dynamics of rumor spreading in complex networks,
Physical Review E, 69 (2004), 066130.
doi: 10.1103/PhysRevE.69.066130. |
[14] |
M. Nagao, K. Suto and A. Ohuchi, A media information analysis for implementing effective countermeasure against harmful rumor,
Journal of Physics, Conference Series, 221 (2010), 012004.
doi: 10.1088/1742-6596/221/1/012004. |
[15] |
M. Nekovee, Y. Moreno, G. Bianconi and M. Marsili,
Theory of rumour spreading in complex social networks, Physica A, 374 (2007), 457-470.
doi: 10.1016/j.physa.2006.07.017. |
[16] |
R. L. Rosnow, J. H. Yost and J. L. Esposito,
Belief in rumor and likelihood of rumor transmission, Language & Communication, 6 (1986), 189-194.
doi: 10.1016/0271-5309(86)90022-4. |
[17] |
A. Sudbury,
The proportion of population never hearing a rumour, Journal of Applied Probability, 22 (1985), 443-446.
doi: 10.2307/3213787. |
[18] |
S. A. Thomas,
Lies, damn lies, and rumors: An analysis of collective efficacy, rumors, and fear in the wake of Katrina, Sociological Spectrum, 27 (2007), 679-703.
doi: 10.1080/02732170701534200. |
[19] |
Y.-Q. Wang, X.-Y. Yang, Y.-L. Han and X.-A. Wang, Rumor Spreading Model with Trust Mechanism in Complex Social Networks, Communications in Theoretical Physics, 59 (2013), 510-516. Google Scholar |
[20] |
J. Wang, L. Zhao and R. Huang,
2SI2R rumor spreading model in homogeneous networks, Physica A, 413 (2014), 153-161.
doi: 10.1016/j.physa.2014.06.053. |
[21] |
D. J. Watts and S. H. Strogatz, Collective dynamics of small-world networks, Nature, 393 (1998), 440-442. Google Scholar |
[22] |
Y. Zan, J. Wua, P. Li and Q. Yua,
SICR rumor spreading model in complex networks: Counterattack and self-resistance, Physica A, 405 (2014), 159-170.
doi: 10.1016/j.physa.2014.03.021. |
[23] |
D. H. Zanette, Critical behavior of propagation on small-world networks,
Physical Review E, 64 (2001), 050901.
doi: 10.1103/PhysRevE.64.050901. |
[24] |
D. H. Zanette, Dynamics of rumor propagation on small-world networks,
Physical Review E, 65 (2002), 041908.
doi: 10.1103/PhysRevE.65.041908. |
[25] |
L. Zhao, H. Cui, X. Qiu, X. Wang and J. Wang,
SIR rumor spreading model in the new media age, Physica A, 392 (2013), 995-1003.
doi: 10.1016/j.physa.2012.09.030. |
[26] |
L. Zhao, J. Wang, Y. Chen, Q. Wang, J. Cheng and H. Cui, SIHR rumor spreading model in social networks, Physica A, 391 (2012), 2444-2453. Google Scholar |
[27] |
L. Zhao, Q. Wang, J. Cheng, Y. Chen, J. Wang and W. Huang,
Rumor spreading model with consideration of forgetting mechanism: A case of online blogging LiveJournal, Physica A, 390 (2011), 2619-2625.
doi: 10.1016/j.physa.2011.03.010. |
[28] |
L. Zhao, W. Xie, H. O. Gao, X. Qiu, X. Wang and S. Zhang,
A rumor spreading model with variable forgetting rate, Physica A, 392 (2013), 6146-6154.
doi: 10.1016/j.physa.2013.07.080. |
[29] |
L. Zhu, H. Zhao and H. Wang,
Complex dynamic behavior of a rumor propagation model with spatial-temporal diffusion terms, Information Sciences, 349/350 (2016), 119-136.
doi: 10.1016/j.ins.2016.02.031. |
[1] |
Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366 |
[2] |
Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021017 |
[3] |
A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020441 |
[4] |
Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275 |
[5] |
C. Burgos, J.-C. Cortés, L. Shaikhet, R.-J. Villanueva. A delayed nonlinear stochastic model for cocaine consumption: Stability analysis and simulation using real data. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1233-1244. doi: 10.3934/dcdss.2020356 |
[6] |
Qian Liu, Shuang Liu, King-Yeung Lam. Asymptotic spreading of interacting species with multiple fronts Ⅰ: A geometric optics approach. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3683-3714. doi: 10.3934/dcds.2020050 |
[7] |
Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234 |
[8] |
Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154 |
[9] |
Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021015 |
[10] |
Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320 |
[11] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
[12] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020450 |
[13] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[14] |
Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292 |
[15] |
Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117 |
[16] |
Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020054 |
[17] |
Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362 |
[18] |
Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315 |
[19] |
Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316 |
[20] |
Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313 |
2019 Impact Factor: 1.053
Tools
Metrics
Other articles
by authors
[Back to Top]