September  2018, 13(3): 515-530. doi: 10.3934/nhm.2018023

SIR Rumor spreading model with trust rate distribution

1. 

Department of Applied Mathematics and the Institute of Natural Sciences, Kyung Hee University, Yongin, 446-701, Korea

2. 

Department of Mathematics, Incheon National University, Incheon, 406-772, Korea

* Corresponding author: Sun-Ho Choi

Received  December 2017 Revised  March 2018 Published  July 2018

Fund Project: The research of B. I. Hong and S.-H. Choi was supported by Korea Electric Power Corporation(Grant number:R18XA02).

In this paper, we study a rumor spreading model in which several types of ignorants exist with trust rate distributions $λ_i $, $≤ i≤ N$. We rigorously show the existence of a threshold on a momentum type initial quantity related to rumor outbreak occurrence regardless of the total initial population. We employ a steady state analysis to obtain the final size of the rumor. Using numerical simulations, we demonstrate the analytical result in which the threshold phenomenon exists for rumor size and discuss interaction between the ignorants of several types of trust rates.

Citation: Bum Il Hong, Nahmwoo Hahm, Sun-Ho Choi. SIR Rumor spreading model with trust rate distribution. Networks & Heterogeneous Media, 2018, 13 (3) : 515-530. doi: 10.3934/nhm.2018023
References:
[1]

P. Bordia and N. DiFonzo, Problem solving in social interactions on the Internet: Rumor as social cognition, Social Psychology Quarterly, 67 (2004), 33-49.  doi: 10.1177/019027250406700105.  Google Scholar

[2]

G. Chen, H. Shen, T. Ye, G. Chen and N. Kerr, A kinetic model for the spread of rumor in emergencies, Discrete Dynamics in Nature and Society, 2013 (2013), Art. ID 605854, 8 pp.  Google Scholar

[3]

D. J. Daley and D. G. Kendall, Epidemics and rumours, Nature, 204 (1964), 1118. doi: 10.1038/2041118a0.  Google Scholar

[4]

D. J. Daley and D. G. Kendall, Stochastic rumours, IMA Journal of Applied Mathematics, 1 (1965), 42-55.  doi: 10.1093/imamat/1.1.42.  Google Scholar

[5]

N. Fountoulakis, K. Panagiotou and T. Sauerwald, Ultra-fast rumor spreading in social networks, Proceedings of the Twenty-Third Annual ACM-SIAM symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, 2012, 1642–1660. doi: 10.1137/1.9781611973099.130.  Google Scholar

[6]

J. GuW. Li and X. Cai, The effect of the forget-remember mechanism on spreading, European Physical Journal B, 62 (2008), 247-255.  doi: 10.1140/epjb/e2008-00139-4.  Google Scholar

[7]

V. IshamS. Harden and M. Nekovee, Stochastic epidemics and rumours on finite random networks, Physica A, 389 (2010), 561-576.  doi: 10.1016/j.physa.2009.10.001.  Google Scholar

[8]

M. E. JaegerS. Anthony and R. L. Rosnow, Who hears what from whom and with what effect:A study of rumor, Personality and Social Psychology Bulletin, 6 (1980), 473-478.   Google Scholar

[9]

J. JiangS. Gong and B. He, Dynamical behavior of a rumor transmission model with Holling-type Ⅱ functional response in emergency event, Physica A, 450 (2016), 228-240.  doi: 10.1016/j.physa.2015.12.143.  Google Scholar

[10]

A. J. Kimmel and A.-F. Audrain-Pontevia, Analysis of commercial rumors from the perspective of marketing managers: Rumor prevalence, effects, and control tactics, Journal of Marketing Communications, 16 (2010), 239-253.  doi: 10.1080/13527260902884433.  Google Scholar

[11]

D. Maki and M. Thomson, Mathematical Models and Applications, Prentice-Hall, Englewood Cliffs, 1973.  Google Scholar

[12]

M. McDonald, O. Suleman, S. Williams, S. Howison and N. F. Johnson, Impact of unexpected events, shocking news, and rumors on foreign exchange market dynamics, Physical Review E, 77 (2008), 046110. doi: 10.1103/PhysRevE.77.046110.  Google Scholar

[13]

Y. Moreno, M. Nekovee and A. Pacheco, Dynamics of rumor spreading in complex networks, Physical Review E, 69 (2004), 066130. doi: 10.1103/PhysRevE.69.066130.  Google Scholar

[14]

M. Nagao, K. Suto and A. Ohuchi, A media information analysis for implementing effective countermeasure against harmful rumor, Journal of Physics, Conference Series, 221 (2010), 012004. doi: 10.1088/1742-6596/221/1/012004.  Google Scholar

[15]

M. NekoveeY. MorenoG. Bianconi and M. Marsili, Theory of rumour spreading in complex social networks, Physica A, 374 (2007), 457-470.  doi: 10.1016/j.physa.2006.07.017.  Google Scholar

[16]

R. L. RosnowJ. H. Yost and J. L. Esposito, Belief in rumor and likelihood of rumor transmission, Language & Communication, 6 (1986), 189-194.  doi: 10.1016/0271-5309(86)90022-4.  Google Scholar

[17]

A. Sudbury, The proportion of population never hearing a rumour, Journal of Applied Probability, 22 (1985), 443-446.  doi: 10.2307/3213787.  Google Scholar

[18]

S. A. Thomas, Lies, damn lies, and rumors: An analysis of collective efficacy, rumors, and fear in the wake of Katrina, Sociological Spectrum, 27 (2007), 679-703.  doi: 10.1080/02732170701534200.  Google Scholar

[19]

Y.-Q. WangX.-Y. YangY.-L. Han and X.-A. Wang, Rumor Spreading Model with Trust Mechanism in Complex Social Networks, Communications in Theoretical Physics, 59 (2013), 510-516.   Google Scholar

[20]

J. WangL. Zhao and R. Huang, 2SI2R rumor spreading model in homogeneous networks, Physica A, 413 (2014), 153-161.  doi: 10.1016/j.physa.2014.06.053.  Google Scholar

[21]

D. J. Watts and S. H. Strogatz, Collective dynamics of small-world networks, Nature, 393 (1998), 440-442.   Google Scholar

[22]

Y. ZanJ. WuaP. Li and Q. Yua, SICR rumor spreading model in complex networks: Counterattack and self-resistance, Physica A, 405 (2014), 159-170.  doi: 10.1016/j.physa.2014.03.021.  Google Scholar

[23]

D. H. Zanette, Critical behavior of propagation on small-world networks, Physical Review E, 64 (2001), 050901. doi: 10.1103/PhysRevE.64.050901.  Google Scholar

[24]

D. H. Zanette, Dynamics of rumor propagation on small-world networks, Physical Review E, 65 (2002), 041908. doi: 10.1103/PhysRevE.65.041908.  Google Scholar

[25]

L. ZhaoH. CuiX. QiuX. Wang and J. Wang, SIR rumor spreading model in the new media age, Physica A, 392 (2013), 995-1003.  doi: 10.1016/j.physa.2012.09.030.  Google Scholar

[26]

L. ZhaoJ. WangY. ChenQ. WangJ. Cheng and H. Cui, SIHR rumor spreading model in social networks, Physica A, 391 (2012), 2444-2453.   Google Scholar

[27]

L. ZhaoQ. WangJ. ChengY. ChenJ. Wang and W. Huang, Rumor spreading model with consideration of forgetting mechanism: A case of online blogging LiveJournal, Physica A, 390 (2011), 2619-2625.  doi: 10.1016/j.physa.2011.03.010.  Google Scholar

[28]

L. ZhaoW. XieH. O. GaoX. QiuX. Wang and S. Zhang, A rumor spreading model with variable forgetting rate, Physica A, 392 (2013), 6146-6154.  doi: 10.1016/j.physa.2013.07.080.  Google Scholar

[29]

L. ZhuH. Zhao and H. Wang, Complex dynamic behavior of a rumor propagation model with spatial-temporal diffusion terms, Information Sciences, 349/350 (2016), 119-136.  doi: 10.1016/j.ins.2016.02.031.  Google Scholar

show all references

References:
[1]

P. Bordia and N. DiFonzo, Problem solving in social interactions on the Internet: Rumor as social cognition, Social Psychology Quarterly, 67 (2004), 33-49.  doi: 10.1177/019027250406700105.  Google Scholar

[2]

G. Chen, H. Shen, T. Ye, G. Chen and N. Kerr, A kinetic model for the spread of rumor in emergencies, Discrete Dynamics in Nature and Society, 2013 (2013), Art. ID 605854, 8 pp.  Google Scholar

[3]

D. J. Daley and D. G. Kendall, Epidemics and rumours, Nature, 204 (1964), 1118. doi: 10.1038/2041118a0.  Google Scholar

[4]

D. J. Daley and D. G. Kendall, Stochastic rumours, IMA Journal of Applied Mathematics, 1 (1965), 42-55.  doi: 10.1093/imamat/1.1.42.  Google Scholar

[5]

N. Fountoulakis, K. Panagiotou and T. Sauerwald, Ultra-fast rumor spreading in social networks, Proceedings of the Twenty-Third Annual ACM-SIAM symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, 2012, 1642–1660. doi: 10.1137/1.9781611973099.130.  Google Scholar

[6]

J. GuW. Li and X. Cai, The effect of the forget-remember mechanism on spreading, European Physical Journal B, 62 (2008), 247-255.  doi: 10.1140/epjb/e2008-00139-4.  Google Scholar

[7]

V. IshamS. Harden and M. Nekovee, Stochastic epidemics and rumours on finite random networks, Physica A, 389 (2010), 561-576.  doi: 10.1016/j.physa.2009.10.001.  Google Scholar

[8]

M. E. JaegerS. Anthony and R. L. Rosnow, Who hears what from whom and with what effect:A study of rumor, Personality and Social Psychology Bulletin, 6 (1980), 473-478.   Google Scholar

[9]

J. JiangS. Gong and B. He, Dynamical behavior of a rumor transmission model with Holling-type Ⅱ functional response in emergency event, Physica A, 450 (2016), 228-240.  doi: 10.1016/j.physa.2015.12.143.  Google Scholar

[10]

A. J. Kimmel and A.-F. Audrain-Pontevia, Analysis of commercial rumors from the perspective of marketing managers: Rumor prevalence, effects, and control tactics, Journal of Marketing Communications, 16 (2010), 239-253.  doi: 10.1080/13527260902884433.  Google Scholar

[11]

D. Maki and M. Thomson, Mathematical Models and Applications, Prentice-Hall, Englewood Cliffs, 1973.  Google Scholar

[12]

M. McDonald, O. Suleman, S. Williams, S. Howison and N. F. Johnson, Impact of unexpected events, shocking news, and rumors on foreign exchange market dynamics, Physical Review E, 77 (2008), 046110. doi: 10.1103/PhysRevE.77.046110.  Google Scholar

[13]

Y. Moreno, M. Nekovee and A. Pacheco, Dynamics of rumor spreading in complex networks, Physical Review E, 69 (2004), 066130. doi: 10.1103/PhysRevE.69.066130.  Google Scholar

[14]

M. Nagao, K. Suto and A. Ohuchi, A media information analysis for implementing effective countermeasure against harmful rumor, Journal of Physics, Conference Series, 221 (2010), 012004. doi: 10.1088/1742-6596/221/1/012004.  Google Scholar

[15]

M. NekoveeY. MorenoG. Bianconi and M. Marsili, Theory of rumour spreading in complex social networks, Physica A, 374 (2007), 457-470.  doi: 10.1016/j.physa.2006.07.017.  Google Scholar

[16]

R. L. RosnowJ. H. Yost and J. L. Esposito, Belief in rumor and likelihood of rumor transmission, Language & Communication, 6 (1986), 189-194.  doi: 10.1016/0271-5309(86)90022-4.  Google Scholar

[17]

A. Sudbury, The proportion of population never hearing a rumour, Journal of Applied Probability, 22 (1985), 443-446.  doi: 10.2307/3213787.  Google Scholar

[18]

S. A. Thomas, Lies, damn lies, and rumors: An analysis of collective efficacy, rumors, and fear in the wake of Katrina, Sociological Spectrum, 27 (2007), 679-703.  doi: 10.1080/02732170701534200.  Google Scholar

[19]

Y.-Q. WangX.-Y. YangY.-L. Han and X.-A. Wang, Rumor Spreading Model with Trust Mechanism in Complex Social Networks, Communications in Theoretical Physics, 59 (2013), 510-516.   Google Scholar

[20]

J. WangL. Zhao and R. Huang, 2SI2R rumor spreading model in homogeneous networks, Physica A, 413 (2014), 153-161.  doi: 10.1016/j.physa.2014.06.053.  Google Scholar

[21]

D. J. Watts and S. H. Strogatz, Collective dynamics of small-world networks, Nature, 393 (1998), 440-442.   Google Scholar

[22]

Y. ZanJ. WuaP. Li and Q. Yua, SICR rumor spreading model in complex networks: Counterattack and self-resistance, Physica A, 405 (2014), 159-170.  doi: 10.1016/j.physa.2014.03.021.  Google Scholar

[23]

D. H. Zanette, Critical behavior of propagation on small-world networks, Physical Review E, 64 (2001), 050901. doi: 10.1103/PhysRevE.64.050901.  Google Scholar

[24]

D. H. Zanette, Dynamics of rumor propagation on small-world networks, Physical Review E, 65 (2002), 041908. doi: 10.1103/PhysRevE.65.041908.  Google Scholar

[25]

L. ZhaoH. CuiX. QiuX. Wang and J. Wang, SIR rumor spreading model in the new media age, Physica A, 392 (2013), 995-1003.  doi: 10.1016/j.physa.2012.09.030.  Google Scholar

[26]

L. ZhaoJ. WangY. ChenQ. WangJ. Cheng and H. Cui, SIHR rumor spreading model in social networks, Physica A, 391 (2012), 2444-2453.   Google Scholar

[27]

L. ZhaoQ. WangJ. ChengY. ChenJ. Wang and W. Huang, Rumor spreading model with consideration of forgetting mechanism: A case of online blogging LiveJournal, Physica A, 390 (2011), 2619-2625.  doi: 10.1016/j.physa.2011.03.010.  Google Scholar

[28]

L. ZhaoW. XieH. O. GaoX. QiuX. Wang and S. Zhang, A rumor spreading model with variable forgetting rate, Physica A, 392 (2013), 6146-6154.  doi: 10.1016/j.physa.2013.07.080.  Google Scholar

[29]

L. ZhuH. Zhao and H. Wang, Complex dynamic behavior of a rumor propagation model with spatial-temporal diffusion terms, Information Sciences, 349/350 (2016), 119-136.  doi: 10.1016/j.ins.2016.02.031.  Google Scholar

Figure 1.  Temporal evolution of $\phi(t)$ with respect to $\delta$ and the plot of $F(\phi)$
Figure 2.  Temporal evolution of the densities $S(t)$ and $R(t)$ with respect to $\delta$
Figure 3.  The final size of the rumor $\phi^\infty$ with respect to $\delta$
[1]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[2]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[3]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[4]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[5]

C. Burgos, J.-C. Cortés, L. Shaikhet, R.-J. Villanueva. A delayed nonlinear stochastic model for cocaine consumption: Stability analysis and simulation using real data. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1233-1244. doi: 10.3934/dcdss.2020356

[6]

Qian Liu, Shuang Liu, King-Yeung Lam. Asymptotic spreading of interacting species with multiple fronts Ⅰ: A geometric optics approach. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3683-3714. doi: 10.3934/dcds.2020050

[7]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[8]

Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154

[9]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[10]

Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320

[11]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[12]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[13]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[14]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[15]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

[16]

Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020054

[17]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[18]

Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315

[19]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[20]

Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (337)
  • HTML views (251)
  • Cited by (0)

Other articles
by authors

[Back to Top]