
-
Previous Article
Long time behavior for the visco-elastic damped wave equation in $\mathbb{R}^n_+$ and the boundary effect
- NHM Home
- This Issue
- Next Article
A Godunov type scheme for a class of LWR traffic flow models with non-local flux
University of Mannheim, Department of Mathematics, 68131 Mannheim, Germany |
We present a Godunov type numerical scheme for a class of scalar conservation laws with non-local flux arising for example in traffic flow models. The proposed scheme delivers more accurate solutions than the widely used Lax-Friedrichs type scheme. In contrast to other approaches, we consider a non-local mean velocity instead of a mean density and provide $L^∞$ and bounded variation estimates for the sequence of approximate solutions. Together with a discrete entropy inequality, we also show the well-posedness of the considered class of scalar conservation laws. The better accuracy of the Godunov type scheme in comparison to Lax-Friedrichs is proved by a variety of numerical examples.
References:
[1] |
A. Aggarwal, R. M. Colombo and P. Goatin,
Nonlocal systems of conservation laws in several space dimensions, SIAM J. Numer. Anal., 53 (2015), 963-983.
doi: 10.1137/140975255. |
[2] |
P. Amorim, R. M. Colombo and A. Teixeira,
On the numerical integration of scalar nonlocal conservation laws, ESAIM Math. Model. Numer. Anal., 49 (2015), 19-37.
doi: 10.1051/m2an/2014023. |
[3] |
D. Armbruster, D. E. Marthaler, C. Ringhofer, K. Kempf and T.-C. Jo,
A continuum model for a re-entrant factory, Oper. Res., 54 (2006), 933-950.
doi: 10.1287/opre.1060.0321. |
[4] |
F. Betancourt, R. Bürger, K. H. Karlsen and E. M. Tory,
On nonlocal conservation laws modelling sedimentation, Nonlinearity, 24 (2011), 855-885.
doi: 10.1088/0951-7715/24/3/008. |
[5] |
S. Blandin and P. Goatin,
Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, Numer. Math., 132 (2016), 217-241.
doi: 10.1007/s00211-015-0717-6. |
[6] |
C. Chalons, P. Goatin and L. M. Villada,
High-order numerical schemes for one-dimensional nonlocal conservation laws, SIAM J. Sci. Comput., 40 (2018), A288-A305.
doi: 10.1137/16M110825X. |
[7] |
F. A. Chiarello and P. Goatin,
Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel, ESAIM: Mathematical Modelling and Numerical Analysis, 52 (2018), 163-180.
doi: 10.1051/m2an/2017066. |
[8] |
R. Colombo, M. Garavello and and M. Lécureux-Mercier,
A class of nonlocal models for pedestrian traffic, Math. Models Methods Appl. Sci., 22 (2012), 1150023-1150057.
doi: 10.1142/S0218202511500230. |
[9] |
R. Colombo, M. Herty and M. Mercier,
Control of the continuity equation with a non local flow, ESAIM Control Optim. Calc. Var., 17 (2011), 353-379.
doi: 10.1051/cocv/2010007. |
[10] |
P. Goatin and S. Scialanga, The Lighthill-Whitham-Richards traffic flow model with non-local velocity: Analytical study and numerical results, INRIA Research Report, 2015. Google Scholar |
[11] |
P. Goatin and S. Scialanga,
Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity, Netw. Heterog. Media, 11 (2016), 107-121.
doi: 10.3934/nhm.2016.11.107. |
[12] |
S. Göttlich, S. Hoher, P. Schindler, V. Schleper and A. Verl,
Modeling, simulation and validation of material flow on conveyor belts, Appl. Math. Model., 38 (2014), 3295-3313.
doi: 10.1016/j.apm.2013.11.039. |
[13] |
S. N. Kružkov, First order quasilinear equations in several independent variables,
Mathematics of the USSR-Sbornik, 10 (1970), 217.
doi: 10.1070/SM1970v010n02ABEH002156. |
[14] |
R. J. LeVeque,
Numerical Methods for Conservation Laws, Birkhäuser Verlag, Basel, 1990.
doi: 10.1007/978-3-0348-5116-9. |
[15] |
M. J. Lighthill and G. B. Whitham,
On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317-345.
doi: 10.1098/rspa.1955.0089. |
[16] |
P. I. Richards,
Shock waves on the highway, Oper. Res., 4 (1956), 42-51.
doi: 10.1287/opre.4.1.42. |
show all references
References:
[1] |
A. Aggarwal, R. M. Colombo and P. Goatin,
Nonlocal systems of conservation laws in several space dimensions, SIAM J. Numer. Anal., 53 (2015), 963-983.
doi: 10.1137/140975255. |
[2] |
P. Amorim, R. M. Colombo and A. Teixeira,
On the numerical integration of scalar nonlocal conservation laws, ESAIM Math. Model. Numer. Anal., 49 (2015), 19-37.
doi: 10.1051/m2an/2014023. |
[3] |
D. Armbruster, D. E. Marthaler, C. Ringhofer, K. Kempf and T.-C. Jo,
A continuum model for a re-entrant factory, Oper. Res., 54 (2006), 933-950.
doi: 10.1287/opre.1060.0321. |
[4] |
F. Betancourt, R. Bürger, K. H. Karlsen and E. M. Tory,
On nonlocal conservation laws modelling sedimentation, Nonlinearity, 24 (2011), 855-885.
doi: 10.1088/0951-7715/24/3/008. |
[5] |
S. Blandin and P. Goatin,
Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, Numer. Math., 132 (2016), 217-241.
doi: 10.1007/s00211-015-0717-6. |
[6] |
C. Chalons, P. Goatin and L. M. Villada,
High-order numerical schemes for one-dimensional nonlocal conservation laws, SIAM J. Sci. Comput., 40 (2018), A288-A305.
doi: 10.1137/16M110825X. |
[7] |
F. A. Chiarello and P. Goatin,
Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel, ESAIM: Mathematical Modelling and Numerical Analysis, 52 (2018), 163-180.
doi: 10.1051/m2an/2017066. |
[8] |
R. Colombo, M. Garavello and and M. Lécureux-Mercier,
A class of nonlocal models for pedestrian traffic, Math. Models Methods Appl. Sci., 22 (2012), 1150023-1150057.
doi: 10.1142/S0218202511500230. |
[9] |
R. Colombo, M. Herty and M. Mercier,
Control of the continuity equation with a non local flow, ESAIM Control Optim. Calc. Var., 17 (2011), 353-379.
doi: 10.1051/cocv/2010007. |
[10] |
P. Goatin and S. Scialanga, The Lighthill-Whitham-Richards traffic flow model with non-local velocity: Analytical study and numerical results, INRIA Research Report, 2015. Google Scholar |
[11] |
P. Goatin and S. Scialanga,
Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity, Netw. Heterog. Media, 11 (2016), 107-121.
doi: 10.3934/nhm.2016.11.107. |
[12] |
S. Göttlich, S. Hoher, P. Schindler, V. Schleper and A. Verl,
Modeling, simulation and validation of material flow on conveyor belts, Appl. Math. Model., 38 (2014), 3295-3313.
doi: 10.1016/j.apm.2013.11.039. |
[13] |
S. N. Kružkov, First order quasilinear equations in several independent variables,
Mathematics of the USSR-Sbornik, 10 (1970), 217.
doi: 10.1070/SM1970v010n02ABEH002156. |
[14] |
R. J. LeVeque,
Numerical Methods for Conservation Laws, Birkhäuser Verlag, Basel, 1990.
doi: 10.1007/978-3-0348-5116-9. |
[15] |
M. J. Lighthill and G. B. Whitham,
On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317-345.
doi: 10.1098/rspa.1955.0089. |
[16] |
P. I. Richards,
Shock waves on the highway, Oper. Res., 4 (1956), 42-51.
doi: 10.1287/opre.4.1.42. |




| Godunov | LxF |
0 | 9.38e-03 | 1.99e-02 |
1 | 6.97e-03 | 1.30e-02 |
2 | 4.29e-03 | 9.31e-03 |
3 | 3.00e-03 | 6.41e-03 |
4 | 1.96e-03 | 4.27e-03 |
5 | 1.33e-03 | 2.71e-03 |
6 | 9.05e-04 | 1.64e-03 |
| Godunov | LxF |
0 | 9.38e-03 | 1.99e-02 |
1 | 6.97e-03 | 1.30e-02 |
2 | 4.29e-03 | 9.31e-03 |
3 | 3.00e-03 | 6.41e-03 |
4 | 1.96e-03 | 4.27e-03 |
5 | 1.33e-03 | 2.71e-03 |
6 | 9.05e-04 | 1.64e-03 |
| Godunov | LxF |
0 | 1.77e-02 | 3.13e-02 |
1 | 1.24e-02 | 2.20e-02 |
2 | 8.49e-03 | 1.41e-02 |
3 | 5.18e-03 | 8.67e-03 |
4 | 3.29e-03 | 5.45e-03 |
5 | 2.02e-03 | 3.47e-03 |
6 | 1.21e-03 | 2.06e-03 |
| Godunov | LxF |
0 | 1.77e-02 | 3.13e-02 |
1 | 1.24e-02 | 2.20e-02 |
2 | 8.49e-03 | 1.41e-02 |
3 | 5.18e-03 | 8.67e-03 |
4 | 3.29e-03 | 5.45e-03 |
5 | 2.02e-03 | 3.47e-03 |
6 | 1.21e-03 | 2.06e-03 |
| | | | |
| 4.46e-02 | 6.85e-03 | 9.90e-04 | 1.60e-04 |
| | | | |
| 4.46e-02 | 6.85e-03 | 9.90e-04 | 1.60e-04 |
[1] |
Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021017 |
[2] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[3] |
Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021018 |
[4] |
Andrea Tosin, Mattia Zanella. Uncertainty damping in kinetic traffic models by driver-assist controls. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021018 |
[5] |
Vakhtang Putkaradze, Stuart Rogers. Numerical simulations of a rolling ball robot actuated by internal point masses. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 143-207. doi: 10.3934/naco.2020021 |
[6] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[7] |
Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1673-1692. doi: 10.3934/dcdss.2020449 |
[8] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[9] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[10] |
Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294 |
[11] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[12] |
Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 |
[13] |
Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20. |
[14] |
Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003 |
[15] |
Christophe Zhang. Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021006 |
[16] |
Cicely K. Macnamara, Mark A. J. Chaplain. Spatio-temporal models of synthetic genetic oscillators. Mathematical Biosciences & Engineering, 2017, 14 (1) : 249-262. doi: 10.3934/mbe.2017016 |
[17] |
Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053 |
[18] |
Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817 |
[19] |
Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409 |
[20] |
Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034 |
2019 Impact Factor: 1.053
Tools
Metrics
Other articles
by authors
[Back to Top]