• Previous Article
    Effective interface conditions for processes through thin heterogeneous layers with nonlinear transmission at the microscopic bulk-layer interface
  • NHM Home
  • This Issue
  • Next Article
    Influence prediction for continuous-time information propagation on networks
December  2018, 13(4): 585-607. doi: 10.3934/nhm.2018027

On boundary optimal control problem for an arterial system: First-order optimality conditions

1. 

Dipartimento di Scienze Aziendali-Management e Innovation Systems, University of Salerno, Via Giovanni Paolo Ⅱ, 132, Fisciano, SA, Italy

2. 

Department of System Analysis, National Mining University, Yavornitskii av., 19, 49005 Dnipro, Ukraine

3. 

Institute for Applied System Analysis of National Academy of Sciences and Ministry of Education and Science of Ukraine, Peremogy av., 37/35, IASA, 03056 Kyiv, Ukraine

4. 

Department of Information and Electrical Engineering and Applied Mathematics, University of Salerno, Via Giovanni Paolo Ⅱ, 132, Fisciano, SA, Italy

* Corresponding author: Rosanna Manzo

Received  December 2017 Revised  August 2018 Published  November 2018

We discuss a control constrained boundary optimal control problem for the Boussinesq-type system arising in the study of the dynamics of an arterial network. We suppose that the control object is described by an initial-boundary value problem for $ 1D $ system of pseudo-parabolic nonlinear equations with an unbounded coefficient in the principle part and the Robin-type of boundary conditions. The main question we study in this part of the paper is about the existence of optimal solutions and first-order optimality conditions.

Citation: Ciro D'Apice, Olha P. Kupenko, Rosanna Manzo. On boundary optimal control problem for an arterial system: First-order optimality conditions. Networks & Heterogeneous Media, 2018, 13 (4) : 585-607. doi: 10.3934/nhm.2018027
References:
[1]

R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.  Google Scholar

[2]

J. Alastruey, Propagation in the Cardiovascular System: Development, Validation and Clinical Applications, Ph.D thesis, Imperial College London, 2006. Google Scholar

[3]

R. C. CascavalC. D'ApiceM. P. D'Arienzo and R. Manzo, Boundary control for an arterial system, J. of Fluid Flow, Heat and Mass Transfer, 3 (2016), 25-33.  doi: 10.11159/jffhmt.2016.004.  Google Scholar

[4]

R. C. CascavalC. D'ApiceM. P. D'Arienzo and R. Manzo, Flow optimization of the vascular networks, Mathematical Biosciences and Engineering, 14 (2017), 607-624.  doi: 10.3934/mbe.2017035.  Google Scholar

[5]

C. D'ApiceM. P. D'ArienzoP. I. Kogut and R. Manzo, On boundary optimal control problem for an arterial system: Existence of feasible solutions, Journal of Evolution Equations, (2018), 1-42.  doi: 10.1007/s00028-018-0460-4.  Google Scholar

[6]

C. D'ApiceP.I. Kogut and R. Manzo, On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains, Networks and Heterogeneous Media, 9 (2014), 501-518.  doi: 10.3934/nhm.2014.9.501.  Google Scholar

[7]

C. D'ApiceP. I. Kogut and R. Manzo, On optimization of a highly re-entrant production system, Networks and Heterogeneous Media, 11 (2016), 415-445.  doi: 10.3934/nhm.2016003.  Google Scholar

[8]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Mathods for Science and Technology, Vol. 5: Evolutional Problems I, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-58090-1.  Google Scholar

[9]

L. FormaggiaD. LamponiM. Tuveri and A. Veneziani, Numerical modeling of 1D arterial networks coupled with a lumped parameters, description of the heart, Comput. Methods Biomech. Biomed. Eng., 9 (2006), 273-288.  doi: 10.1080/10255840600857767.  Google Scholar

[10]

L. Formaggia, A. Quarteroni and A. Veneziani, Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System, Springer Verlag, Berlin, 2010. Google Scholar

[11]

H. Gajewski, K. Gröger and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974.  Google Scholar

[12]

F. C. Hoppensteadt and C. Peskin, Modeling and Simulation in Medicine and the Life Sciences, Springer-Verlag, New York, 2002. doi: 10.1007/978-0-387-21571-6.  Google Scholar

[13]

M. O. Korpusov and A. G. Sveshnikov, Nonlinear Functional Analysis and Mathematical Modelling in Physics: Methods of Nonlinear Operators, KRASAND, Moskov, 2011 (in Russian). Google Scholar

[14]

A. Kufner, Weighted Sobolev Spaces, Wiley & Sons, New York, 1985.  Google Scholar

[15]

F. Liang, D. Guan and J. Alastruey, Determinant factors for arterial hemodynamics in hypertension: Theoretical insights from a computational model-based study, ASME Journal of Biomechanical Engineering, 140 (2018), 031006. doi: 10.1115/1.4038430.  Google Scholar

[16]

D. MitsotakisD. Dutykh and L. Qian, Asymptotic nonlinear and dispersive pulsatile flow in elastic vessels with cylindrical symmetry, Computers & Mathematics with Applications, 75 (2018), 4022-4027.  doi: 10.1016/j.camwa.2018.03.011.  Google Scholar

[17]

M. S. OlufsenJ. T. OttesenH. T. TranL. M. EllweinL. A. Lipsitz and V. Novak, Blood pressure and blood flow variation during postural change from sitting to standing: model development and validation, J. Appl. Physiol, 99 (2005), 1523-1537.  doi: 10.1152/japplphysiol.00177.2005.  Google Scholar

[18]

G. Pontrelli and E. Rossoni, Numerical modeling of the pressure wave propagation in the arterial flow, International Journal for Numerical Methods in Fluids, 43 (2003), 651-671.  doi: 10.1002/fld.494.  Google Scholar

[19]

A. QuarteroniA. Manzoni and C. Vergara, The cardiovascular system: Mathematical modelling, numerical algorithms and clinical applications, Acta Numerica, 16 (2017), 365-590.  doi: 10.1017/S0962492917000046.  Google Scholar

[20]

P. ReymondF. MerendaF. PerrenD. Rafenacht and N. Stergiopulos, Validation of a one-dimensional model of the systemic arterial tree, Am J Physiol Heart Circ Physiol., 297 (2009), H208-H222.  doi: 10.1152/ajpheart.00037.2009.  Google Scholar

[21]

S. J. SherwinL. FormaggiaJ. Peiro and V. Franke, Computational modeling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system, Internat. J. for Numerical Methods in Fluids, 43 (2003), 673-700.  doi: 10.1002/fld.543.  Google Scholar

show all references

References:
[1]

R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.  Google Scholar

[2]

J. Alastruey, Propagation in the Cardiovascular System: Development, Validation and Clinical Applications, Ph.D thesis, Imperial College London, 2006. Google Scholar

[3]

R. C. CascavalC. D'ApiceM. P. D'Arienzo and R. Manzo, Boundary control for an arterial system, J. of Fluid Flow, Heat and Mass Transfer, 3 (2016), 25-33.  doi: 10.11159/jffhmt.2016.004.  Google Scholar

[4]

R. C. CascavalC. D'ApiceM. P. D'Arienzo and R. Manzo, Flow optimization of the vascular networks, Mathematical Biosciences and Engineering, 14 (2017), 607-624.  doi: 10.3934/mbe.2017035.  Google Scholar

[5]

C. D'ApiceM. P. D'ArienzoP. I. Kogut and R. Manzo, On boundary optimal control problem for an arterial system: Existence of feasible solutions, Journal of Evolution Equations, (2018), 1-42.  doi: 10.1007/s00028-018-0460-4.  Google Scholar

[6]

C. D'ApiceP.I. Kogut and R. Manzo, On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains, Networks and Heterogeneous Media, 9 (2014), 501-518.  doi: 10.3934/nhm.2014.9.501.  Google Scholar

[7]

C. D'ApiceP. I. Kogut and R. Manzo, On optimization of a highly re-entrant production system, Networks and Heterogeneous Media, 11 (2016), 415-445.  doi: 10.3934/nhm.2016003.  Google Scholar

[8]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Mathods for Science and Technology, Vol. 5: Evolutional Problems I, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-58090-1.  Google Scholar

[9]

L. FormaggiaD. LamponiM. Tuveri and A. Veneziani, Numerical modeling of 1D arterial networks coupled with a lumped parameters, description of the heart, Comput. Methods Biomech. Biomed. Eng., 9 (2006), 273-288.  doi: 10.1080/10255840600857767.  Google Scholar

[10]

L. Formaggia, A. Quarteroni and A. Veneziani, Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System, Springer Verlag, Berlin, 2010. Google Scholar

[11]

H. Gajewski, K. Gröger and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974.  Google Scholar

[12]

F. C. Hoppensteadt and C. Peskin, Modeling and Simulation in Medicine and the Life Sciences, Springer-Verlag, New York, 2002. doi: 10.1007/978-0-387-21571-6.  Google Scholar

[13]

M. O. Korpusov and A. G. Sveshnikov, Nonlinear Functional Analysis and Mathematical Modelling in Physics: Methods of Nonlinear Operators, KRASAND, Moskov, 2011 (in Russian). Google Scholar

[14]

A. Kufner, Weighted Sobolev Spaces, Wiley & Sons, New York, 1985.  Google Scholar

[15]

F. Liang, D. Guan and J. Alastruey, Determinant factors for arterial hemodynamics in hypertension: Theoretical insights from a computational model-based study, ASME Journal of Biomechanical Engineering, 140 (2018), 031006. doi: 10.1115/1.4038430.  Google Scholar

[16]

D. MitsotakisD. Dutykh and L. Qian, Asymptotic nonlinear and dispersive pulsatile flow in elastic vessels with cylindrical symmetry, Computers & Mathematics with Applications, 75 (2018), 4022-4027.  doi: 10.1016/j.camwa.2018.03.011.  Google Scholar

[17]

M. S. OlufsenJ. T. OttesenH. T. TranL. M. EllweinL. A. Lipsitz and V. Novak, Blood pressure and blood flow variation during postural change from sitting to standing: model development and validation, J. Appl. Physiol, 99 (2005), 1523-1537.  doi: 10.1152/japplphysiol.00177.2005.  Google Scholar

[18]

G. Pontrelli and E. Rossoni, Numerical modeling of the pressure wave propagation in the arterial flow, International Journal for Numerical Methods in Fluids, 43 (2003), 651-671.  doi: 10.1002/fld.494.  Google Scholar

[19]

A. QuarteroniA. Manzoni and C. Vergara, The cardiovascular system: Mathematical modelling, numerical algorithms and clinical applications, Acta Numerica, 16 (2017), 365-590.  doi: 10.1017/S0962492917000046.  Google Scholar

[20]

P. ReymondF. MerendaF. PerrenD. Rafenacht and N. Stergiopulos, Validation of a one-dimensional model of the systemic arterial tree, Am J Physiol Heart Circ Physiol., 297 (2009), H208-H222.  doi: 10.1152/ajpheart.00037.2009.  Google Scholar

[21]

S. J. SherwinL. FormaggiaJ. Peiro and V. Franke, Computational modeling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system, Internat. J. for Numerical Methods in Fluids, 43 (2003), 673-700.  doi: 10.1002/fld.543.  Google Scholar

[1]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[2]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[3]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[4]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[5]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[6]

Yen-Luan Chen, Chin-Chih Chang, Zhe George Zhang, Xiaofeng Chen. Optimal preventive "maintenance-first or -last" policies with generalized imperfect maintenance models. Journal of Industrial & Management Optimization, 2021, 17 (1) : 501-516. doi: 10.3934/jimo.2020149

[7]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[8]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[9]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[10]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[11]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[12]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[13]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[14]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[15]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[16]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[17]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[18]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[19]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[20]

Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (99)
  • HTML views (258)
  • Cited by (0)

Other articles
by authors

[Back to Top]