Network flows and specifically water flow in open canals can be modeled bysystems of balance laws defined ongraphs.The shallow water or Saint-Venant system of balance laws is one of the most used modeland present two phases: fluvial or sub-critical and torrential or super-critical.Phase transitions may occur within the same canal but transitions relatedto networks are less investigated.In this paper we provide a complete characterization of possible phase transitionsfor a case study of a simple scenariowith two canals and one junction.However, our analysis allows the study of more complicate networks.Moreover, we provide some numerical simulations to show the theory at work.
Citation: |
Figure 3.
Graph of
Figure 4.
Left-half Riemann problem, Section 4.1. Region
Figure 10. Numerical test case for the configuration given in Fig. 9
Figure 11. Numerical test case for the configuration given in Fig. 16
[1] |
G. Bastin, A. M. Bayen, C. D'Apice, X. Litrico and B. Piccoli, Open problems and research perspectives for irrigation channels, Netw. Heterog. Media, 4 (2009), ⅰ-ⅴ.
![]() ![]() |
[2] |
G. Bastin and J.-M. Coron, Stability and boundary stabilization of 1-D hyperbolic systems,
Progress in Nonlinear Differential Equations and their Applications, 88 (2016), xiv+307 pp, Birkhäuser/Springer, [Cham]. Subseries in Control.
doi: 10.1007/978-3-319-32062-5.![]() ![]() ![]() |
[3] |
G. Bastin, J.-M. Coron and B. d'Andréa Novel, On Lyapunov stability of linearised Saint-Venant equations for a sloping channel, Netw. Heterog. Media, 4 (2009), 177-187.
doi: 10.3934/nhm.2009.4.177.![]() ![]() ![]() |
[4] |
A. Bressan,
Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem, volume 20 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2000.
![]() ![]() |
[5] |
A. Bressan, S. Canic, M. Garavello, M. Herty and B. Piccoli, Flows on networks: Recent results and perspectives, EMS Surv. Math. Sci., 1 (2014), 47-111.
doi: 10.4171/EMSS/2.![]() ![]() ![]() |
[6] |
M. Briani, B. Piccoli and J.-M. Qiu, Notes on RKDG methods for shallow-water equations in canal networks, Journal of Scientific Computing, 68 (2016), 1101-1123.
doi: 10.1007/s10915-016-0172-2.![]() ![]() ![]() |
[7] |
B. Cockburn and C.-W. Shu, Tvb runge-kutta local projection discontinuous galerkin finite element method for conservation laws ⅱ: General framework, Mathematics of Computation, 52 (1989), 411-435.
doi: 10.2307/2008474.![]() ![]() ![]() |
[8] |
B. Cockburn and C.-W. Shu, Runge-kutta discontinuous galerkin methods for convection-dominated problems, Journal of Scientific Computing, 16 (2001), 173-261.
doi: 10.1023/A:1012873910884.![]() ![]() ![]() |
[9] |
R. M. Colombo, M. Herty and V. Sachers, On 2×2 conservation laws at a junction, SIAM Journal on Mathematical Analysis, 40 (2008), 605-622.
doi: 10.1137/070690298.![]() ![]() ![]() |
[10] |
C. M. Dafermos,
Hyperbolic Conservation Laws in Continuum Physics, volume 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, fourth edition, 2016.
doi: 10.1007/978-3-662-49451-6.![]() ![]() ![]() |
[11] |
R. Dasgupta and R. Govindarajan, The hydraulic jump and the shallow-water equations, International Journal of Advances in Engineering Sciences and Applied Mathematics, 3 (2011), 126-130.
doi: 10.1007/s12572-011-0047-6.![]() ![]() ![]() |
[12] |
M. Garavello and B. Piccoli,
Traffic Flow on Networks, volume 1 of AIMS Series on Applied Mathematics. American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006.
![]() ![]() |
[13] |
M. Garavello and B. Piccoli, Riemann solvers for conservation laws at a node, proceeding of
the Hyperbolic problems: Theory, Numerics and Applications, Proc. Sympos. Appl. Math., Amer. Math. Soc., Providence, RI, 67 (2009), 595-604.
doi: 10.1090/psapm/067.2/2605255.![]() ![]() ![]() |
[14] |
M. S. Goudiaby and G. Kreiss, A riemann problem at a junction of open canals, Journal of Hyperbolic Differential Equations, 10 (2013), 431-460.
doi: 10.1142/S021989161350015X.![]() ![]() ![]() |
[15] |
Q. Gu and T. Li, Exact boundary controllability of nodal profile for unsteady flows on a tree-like network of open canals, J. Math. Pures Appl. (9), 99 (2013), 86-105.
doi: 10.1016/j.matpur.2012.06.004.![]() ![]() ![]() |
[16] |
M. Gugat, Optimal nodal control of networked hyperbolic systems: Evaluation of derivatives, Adv. Model. Optim, 7 (2005), 9-37.
![]() ![]() |
[17] |
M. Gugat and G. Leugering, Global boundary controllability of the Saint-Venant system for sloped canals with friction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 257-270.
doi: 10.1016/j.anihpc.2008.01.002.![]() ![]() ![]() |
[18] |
M. Gugat, G. Leugering and E. J. P. G. Schmidt, Global controllability between steady supercritical flows in channel networks, Mathematical Methods in the Applied Sciences, 27 (2004), 781-802.
doi: 10.1002/mma.471.![]() ![]() ![]() |
[19] |
F. M. Hante, G. Leugering, A. Martin, L. Schewe and M. Schmidt, Challenges in optimal
control problems for gas and fluid flow in networks of pipes and canals: From modeling to
industrial application, In Industrial mathematics and complex systems, Ind. Appl. Math.,
(2017), pages 77-122. Springer, Singapore.
![]() ![]() |
[20] |
M. Herty and M. Seaïd, Assessment of coupling conditions in water way intersections, International Journal for Numerical Methods in Fluids, 71 (2013), 1438-1460.
doi: 10.1002/fld.3719.![]() ![]() ![]() |
[21] |
H. Holden and N. H. Risebro,
Front Tracking for Hyperbolic Conservation Laws, Applied Mathematical Sciences. Springer Berlin Heidelberg, 2015.
doi: 10.1007/978-3-662-47507-2.![]() ![]() ![]() |
[22] |
G. Leugering and J. P. G. Schmidt, On the modelling and stabilization of flows in networks of open canals, SIAM journal on control and optimization, 41 (2002), 164-180.
doi: 10.1137/S0363012900375664.![]() ![]() ![]() |
[23] |
X. Litrico, V. Fromion, J.-P. Baume, C. Arranja and M. Rijo, Experimental validation of a methodology to control irrigation canals based on saint-venant equations, Control Engineering Practice, 13 (2005), 1425-1437.
![]() |
[24] |
A. Marigo, Entropic solutions for irrigation networks, SIAM Journal on Applied Mathematics, 70 (2010), 1711-1735.
doi: 10.1137/09074783X.![]() ![]() ![]() |
[25] |
P. C. D. Milly, J. Betancourt, M. Falkenmark, R. M. Hirsch, Z. W. Kundzewicz, D. P. Lettenmaier and R. J. Stouffer, Stationarity is dead: Whither water management?, Science, 319 (2008), 573-574.
![]() |
[26] |
C. Prieur and J. J. Winkin, Boundary feedback control of linear hyperbolic systems: Application to the Saint-Venant-Exner equations, Automatica J. IFAC, 89 (2018), 44-51.
doi: 10.1016/j.automatica.2017.11.028.![]() ![]() ![]() |