Article Contents
Article Contents

# Fluvial to torrential phase transition in open canals

• Network flows and specifically water flow in open canals can be modeled bysystems of balance laws defined ongraphs.The shallow water or Saint-Venant system of balance laws is one of the most used modeland present two phases: fluvial or sub-critical and torrential or super-critical.Phase transitions may occur within the same canal but transitions relatedto networks are less investigated.In this paper we provide a complete characterization of possible phase transitionsfor a case study of a simple scenariowith two canals and one junction.However, our analysis allows the study of more complicate networks.Moreover, we provide some numerical simulations to show the theory at work.

Mathematics Subject Classification: Primary: 35L60, 35L67; Secondary: 65N08.

 Citation:

• Figure 1.  Shocks, rarefaction and critical curves 10-14 on the plane $(h, v)$ (up) and on the plane $(h, q)$ (down)

Figure 2.  Graph of $\phi_l$ and $\phi_r$ defined in 15 and 16 respectively

Figure 3.  Graph of $q = \tilde{\phi}_l(h)$ for different values of left state $u_l$ and its intersections with critical curves $q = \tilde{\mathcal{C}}^+(h)$ and $q = \tilde{\mathcal{C}}^-(h)$. The left state $u_l$ have been chosen such that: $F_l>1$ (dotted green line), $|F_l| < 1$ (blue dashed line) and $-2\leq F_l<-1$ (red dotted line)

Figure 4.  Left-half Riemann problem, Section 4.1. Region $\mathcal{N}^A(u_l) = \mathcal{I}^A_1\bigcup\mathcal{I}^A_2\bigcup\mathcal{I}^A_3$ defined by 29-31. Following our notation $\tilde{\mathcal{S}}_2(u^-_{l, \mathcal{S}};h) = h\mathcal{S}_2(h^-_{l, \mathcal{S}}, \mathcal{C}^-(h^-_{l, \mathcal{S}});h)$

Figure 5.  Left-half Riemann problem, Section 4.1. Region $\mathcal{N}^B(u_l) = \mathcal{I}^{*, A}_1\bigcup\mathcal{I}^{*, A}_2\bigcup\mathcal{I}^{*, A}_3$ given in 32

Figure 6.  Left-half Riemann problem, Section 4.1. Region $\mathcal{N}^C(u_l)$ bounded by $q = \tilde{\mathcal{S}}_2(u^{-}_{l, \mathcal{R}};h)$ and $q = \tilde{\mathcal{C}}^-(h)$ as defined in 33

Figure 12.  Right-half Riemann problem, Section 4.2. Region $\mathcal{P}^A(u_r) = \mathcal{O}^A_1\bigcup\mathcal{O}^A_2\bigcup\mathcal{O}^A_3$ defined by 35-37 where $u_r$ is such that $|\tilde{\mathcal{F}}_r|<1$

Figure 13.  Right-half Riemann problem, Section 4.2. Region $\mathcal{P}^B(u_r)$ bounded by $q = \tilde{\mathcal{S}}_2(u^{-}_{l, \mathcal{R}};h)$ and $q = \tilde{\mathcal{C}}^+(h)$ as defined in 38 where $u_r$ is such that $\tilde{\mathcal{F}}_r>1$

Figure 14.  Right-half Riemann problem, Section 4.2. Region $\mathcal{P}^C(u_r) = \mathcal{O}^{*, A}_1\bigcup\mathcal{O}^{*, A}_2\bigcup\mathcal{O}^{*, A}_3$ given in 39 where $u_r$ is such that $\tilde{\mathcal{F}}_r<-1$.

Figure 7.  Case Fluvial $\rightarrow$ Fluvial, system 42. In this case curves $\tilde{\phi}_l$ and $\tilde{\phi}_r$ intersect inside the subcritical region. The solution is the intersection point $u^b$

Figure 8.  Case Fluvial $\rightarrow$ Fluvial, system 42: curves $\tilde{\phi}_l$ and $\tilde{\phi}_r$ have empty intersection inside the subcritical region and $h_r<h_l$. The solution is the critical point $u^+_{l, \mathcal{R}}$

Figure 9.  Case Fluvial $\rightarrow$ Fluvial, system 42: curves $\tilde{\phi}_l$ and $\tilde{\phi}_r$ have empty intersection inside the subcritical region and $h_l<h_r$. The solution is the critical point $u^-_{r, \mathcal{R}}$

Figure 15.  Case Torrential $\rightarrow$ Fluvial, system 45. In this case the curve $h\mathcal{S}_1(h^*, v^*;h)$ and $\tilde{\phi}_r(h)$ intersect inside the subcritical region. The solution is the intersection point $u^b$.

Figure 16.  Case Torrential $\rightarrow$ Fluvial, system 45. In this case the curve $h\mathcal{S}_1(h^*, v^*;h)$ and $\tilde{\phi}_r(h)$ have empty intersection inside the subcritical region. This configuration is an example in which system 45 does not admit a solution.

Figure 17.  Case Torrential $\rightarrow$ Fluvial, system 45. In this case the curve $h\mathcal{S}_1(h^*, v^*;h)$ and $\tilde{\phi}_r(h)$ have empty intersection inside the subcritical region. The solution is the point $u^-_{r, \mathcal{R}}$

Figure 18.  Case Torrential $\rightarrow$ Torrential. In this case the two admissible regions $\mathcal{N}^B$ and $\mathcal{P}^B$ have empty intersection

Figure 10.  Numerical test case for the configuration given in Fig. 9

Figure 11.  Numerical test case for the configuration given in Fig. 16

•  [1] G. Bastin, A. M. Bayen, C. D'Apice, X. Litrico and B. Piccoli, Open problems and research perspectives for irrigation channels, Netw. Heterog. Media, 4 (2009), ⅰ-ⅴ. [2] G. Bastin and J.-M. Coron, Stability and boundary stabilization of 1-D hyperbolic systems, Progress in Nonlinear Differential Equations and their Applications, 88 (2016), xiv+307 pp, Birkhäuser/Springer, [Cham]. Subseries in Control. doi: 10.1007/978-3-319-32062-5. [3] G. Bastin, J.-M. Coron and B. d'Andréa Novel, On Lyapunov stability of linearised Saint-Venant equations for a sloping channel, Netw. Heterog. Media, 4 (2009), 177-187.  doi: 10.3934/nhm.2009.4.177. [4] A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem, volume 20 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2000. [5] A. Bressan, S. Canic, M. Garavello, M. Herty and B. Piccoli, Flows on networks: Recent results and perspectives, EMS Surv. Math. Sci., 1 (2014), 47-111.  doi: 10.4171/EMSS/2. [6] M. Briani, B. Piccoli and J.-M. Qiu, Notes on RKDG methods for shallow-water equations in canal networks, Journal of Scientific Computing, 68 (2016), 1101-1123.  doi: 10.1007/s10915-016-0172-2. [7] B. Cockburn and C.-W. Shu, Tvb runge-kutta local projection discontinuous galerkin finite element method for conservation laws ⅱ: General framework, Mathematics of Computation, 52 (1989), 411-435.  doi: 10.2307/2008474. [8] B. Cockburn and C.-W. Shu, Runge-kutta discontinuous galerkin methods for convection-dominated problems, Journal of Scientific Computing, 16 (2001), 173-261.  doi: 10.1023/A:1012873910884. [9] R. M. Colombo, M. Herty and V. Sachers, On 2×2 conservation laws at a junction, SIAM Journal on Mathematical Analysis, 40 (2008), 605-622.  doi: 10.1137/070690298. [10] C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, volume 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, fourth edition, 2016. doi: 10.1007/978-3-662-49451-6. [11] R. Dasgupta and R. Govindarajan, The hydraulic jump and the shallow-water equations, International Journal of Advances in Engineering Sciences and Applied Mathematics, 3 (2011), 126-130.  doi: 10.1007/s12572-011-0047-6. [12] M. Garavello and B. Piccoli, Traffic Flow on Networks, volume 1 of AIMS Series on Applied Mathematics. American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006. [13] M. Garavello and B. Piccoli, Riemann solvers for conservation laws at a node, proceeding of the Hyperbolic problems: Theory, Numerics and Applications, Proc. Sympos. Appl. Math., Amer. Math. Soc., Providence, RI, 67 (2009), 595-604.  doi: 10.1090/psapm/067.2/2605255. [14] M. S. Goudiaby and G. Kreiss, A riemann problem at a junction of open canals, Journal of Hyperbolic Differential Equations, 10 (2013), 431-460.  doi: 10.1142/S021989161350015X. [15] Q. Gu and T. Li, Exact boundary controllability of nodal profile for unsteady flows on a tree-like network of open canals, J. Math. Pures Appl. (9), 99 (2013), 86-105.  doi: 10.1016/j.matpur.2012.06.004. [16] M. Gugat, Optimal nodal control of networked hyperbolic systems: Evaluation of derivatives, Adv. Model. Optim, 7 (2005), 9-37. [17] M. Gugat and G. Leugering, Global boundary controllability of the Saint-Venant system for sloped canals with friction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 257-270.  doi: 10.1016/j.anihpc.2008.01.002. [18] M. Gugat, G. Leugering and E. J. P. G. Schmidt, Global controllability between steady supercritical flows in channel networks, Mathematical Methods in the Applied Sciences, 27 (2004), 781-802.  doi: 10.1002/mma.471. [19] F. M. Hante, G. Leugering, A. Martin, L. Schewe and M. Schmidt, Challenges in optimal control problems for gas and fluid flow in networks of pipes and canals: From modeling to industrial application, In Industrial mathematics and complex systems, Ind. Appl. Math., (2017), pages 77-122. Springer, Singapore. [20] M. Herty and M. Seaïd, Assessment of coupling conditions in water way intersections, International Journal for Numerical Methods in Fluids, 71 (2013), 1438-1460.  doi: 10.1002/fld.3719. [21] H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, Applied Mathematical Sciences. Springer Berlin Heidelberg, 2015. doi: 10.1007/978-3-662-47507-2. [22] G. Leugering and J. P. G. Schmidt, On the modelling and stabilization of flows in networks of open canals, SIAM journal on control and optimization, 41 (2002), 164-180.  doi: 10.1137/S0363012900375664. [23] X. Litrico, V. Fromion, J.-P. Baume, C. Arranja and M. Rijo, Experimental validation of a methodology to control irrigation canals based on saint-venant equations, Control Engineering Practice, 13 (2005), 1425-1437. [24] A. Marigo, Entropic solutions for irrigation networks, SIAM Journal on Applied Mathematics, 70 (2010), 1711-1735.  doi: 10.1137/09074783X. [25] P. C. D. Milly, J. Betancourt, M. Falkenmark, R. M. Hirsch, Z. W. Kundzewicz, D. P. Lettenmaier and R. J. Stouffer, Stationarity is dead: Whither water management?, Science, 319 (2008), 573-574. [26] C. Prieur and J. J. Winkin, Boundary feedback control of linear hyperbolic systems: Application to the Saint-Venant-Exner equations, Automatica J. IFAC, 89 (2018), 44-51.  doi: 10.1016/j.automatica.2017.11.028.

Figures(18)