[1]
|
A. Ashyralyev and D. Agirseven, Well-posedness of delay parabolic difference equations, Adv. Difference Equ., 2014 (2014), 20pp.
doi: 10.1186/1687-1847-2014-18.
|
[2]
|
A. Ashyralyev and D. Agirseven, Bounded Solutions of nonlinear hyperbolic equations with time delay, Electron. J. Differential Equations, 2018 (2018), Paper No. 21, 15 pp.
|
[3]
|
A. Aw and M. Rascle, Resurrection of "second order" models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916-938.
doi: 10.1137/S0036139997332099.
|
[4]
|
A. Aw, A. Klar, T. Materne and M. Rascle, Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM J. Appl. Math., 63 (2002), 259-278.
doi: 10.1137/S0036139900380955.
|
[5]
|
A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations, Oxford University Press, Oxford, 2013.
|
[6]
|
M. Brackstone and M. Mcdonald, Car-following: A historical review, Transportation Research Part F: Traffic Psychology and Behaviour, 2 (1999), 181-196.
doi: 10.1016/S1369-8478(00)00005-X.
|
[7]
|
R. E. Chandler, R. Herman and E. W. Montroll, Traffic dynamics: Studies in car following, Operations Res., 6 (1958), 165-184.
doi: 10.1287/opre.6.2.165.
|
[8]
|
R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth, On the Lambert W Function, Adv. Comput. Math, 5 (1996), 329-356.
doi: 10.1007/BF02124750.
|
[9]
|
C. D'Apice and B. Piccoli, Vertex flow models for vehicular traffic on networks, Math. Models Methods Appl. Sci., 18 (2008), 1299-1315.
doi: 10.1142/S0218202508003042.
|
[10]
|
C.F. Daganzo, Requiem for second-order fluid approximations of traffic flow, Transportation Research Part B: Methodological, 29 (1995), 277-286.
doi: 10.1016/0191-2615(95)00007-Z.
|
[11]
|
N. Davoodi, A. R. Soheili and S. M. Hashemi, A macro-model for traffic flow with consideration of driver's reaction time and distance, Nonlinear Dynam., 83 (2016), 1621-1628.
doi: 10.1007/s11071-015-2435-0.
|
[12]
|
G. Emch, Coarse-graining in Liouville space and master equation, Helv. Phys. Acta, 37 (1964), 532-544.
|
[13]
|
S. Fan and B. Seibold, Effect of the choice of stagnation density in data-fitted first- and second-order traffic models, preprint, arXiv: 1308.0393.
|
[14]
|
S. Fan, M. Herty and B. Seibold, Comparative model accuracy of a data-fitted generalized Aw-Rascle-Zhang model, Netw. Heterog. Media, 9 (2014), 239-268.
doi: 10.3934/nhm.2014.9.239.
|
[15]
|
M. Garavello and B. Piccoli, Traffic Flow on Networks, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006.
|
[16]
|
S. Gottlieb and C.-W. Shu, Total variation diminishing Runge-Kutta schemes, Math. Comp., 67 (1998), 73-85.
doi: 10.1090/S0025-5718-98-00913-2.
|
[17]
|
A. Harten, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 135 (1997), 259-278.
doi: 10.1006/jcph.1997.5725.
|
[18]
|
D. Helbing, Verkehrsdynamik: Neue Physikalische Modellierungskonzepte, Springer Berlin Heidelberg, 1997.
|
[19]
|
S. P. Hoogendoorn and P. H. Bovy, State-of-the-art of vehicular traffic flow modelling, Proceedings of the Institution of Mechanical Engineers, Part Ⅰ: Journal of Systems and Control Engineering, 215 (2001), 283–303.
doi: 10.1177/095965180121500402.
|
[20]
|
W.-F. Jiang and Z. Wang, Developing an Aw-Rascle model of traffic flow, J. Engrg. Math., 97 (2016), 135-146.
doi: 10.1007/s10665-015-9801-2.
|
[21]
|
E. Kometani and T. Sasaki, On the stability of traffic flow (Report-I), J. Op. Res. Japan, 2 (1958), 11-26.
|
[22]
|
H. K. Lee, H.-W. Lee and D. Kim, Macroscopic traffic models from microscopic car-following models, Physical Review E, 64 (2001), 056126.
doi: 10.1103/PhysRevE.64.056126.
|
[23]
|
R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, 31st edition, Cambridge University Press, 2002.
doi: 10.1017/CBO9780511791253.
|
[24]
|
R. J. LeVeque, Numerical Methods for Conservation Laws, 2nd edition, Birkhäuser Verlag, Basel, 1992.
doi: 10.1007/978-3-0348-8629-1.
|
[25]
|
F. Maghami Asl and A. Ulsoy, Analysis of a system of linear delay differential equations, Journal of Dynamic Systems, Measurement, and Control, 125 (2003), 215-223.
doi: 10.1115/1.1568121.
|
[26]
|
D. Ngoduy, Generalized macroscopic traffic model with time delay, Nonlinear Dynam., 77 (2014), 289-296.
doi: 10.1007/s11071-014-1293-5.
|
[27]
|
H. J. Payne, Models of freeway traffic and control, Mathematical Models of Public Systems, Simulation Council Proceedings, (1971), 51–61.
|
[28]
|
RTMC Data Set, Available from: http://data.dot.state.mn.us/datatools/.
|
[29]
|
C.-W. Shu, TVB uniformly high-order schemes for conservation laws, Math. Comp., 49 (1987), 105-121.
doi: 10.1090/S0025-5718-1987-0890256-5.
|
[30]
|
A. Tordeux, G. Costeseque, M. Herty and A. Seyfried, From traffic and pedestrian follow-the-leader models with reaction time to first order convection-diffusion flow models, SIAM J. Appl. Math., 78 (2018), 63-79.
doi: 10.1137/16M110695X.
|
[31]
|
C. Travis and G. Webb, Existence and Stability for Partial Functional Differential Equations, Transactions of the American Mathematical Society, 200 (1974), 395-418.
doi: 10.1090/S0002-9947-1974-0382808-3.
|
[32]
|
M. Treiber and A. Kesting, Traffic Flow Dynamics, Springer, Heidelberg, 2013.
doi: 10.1007/978-3-642-32460-4.
|
[33]
|
G. B. Whitham, Linear and Nonlinear Waves, John Wiley & Sons, Inc., New York, 1999.
doi: 10.1002/9781118032954.
|