June  2019, 14(2): 289-316. doi: 10.3934/nhm.2019012

Newtonian fluid flow in a thin porous medium with non-homogeneous slip boundary conditions

1. 

Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Sevilla, P. O. Box 1160, 41080-Sevilla, Spain

2. 

Departamento de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, 41012-Sevilla, Spain

* Corresponding author: Francisco Javier Suárez-Grau

Received  April 2018 Revised  September 2018 Published  April 2019

Fund Project: María Anguiano is supported by Junta de Andalucía (Spain), Proyecto de Excelencia P12-FQM-2466. Francisco Javier Suárez-Grau is supported by Ministerio de Economía y Competitividad (Spain), Proyecto Excelencia MTM2014-53309-P.

We consider the Stokes system in a thin porous medium $ \Omega_\varepsilon $ of thickness $ \varepsilon $ which is perforated by periodically distributed solid cylinders of size $ \varepsilon $. On the boundary of the cylinders we prescribe non-homogeneous slip boundary conditions depending on a parameter $ \gamma $. The aim is to give the asymptotic behavior of the velocity and the pressure of the fluid as $ \varepsilon $ goes to zero. Using an adaptation of the unfolding method, we give, following the values of $ \gamma $, different limit systems.

Citation: María Anguiano, Francisco Javier Suárez-Grau. Newtonian fluid flow in a thin porous medium with non-homogeneous slip boundary conditions. Networks & Heterogeneous Media, 2019, 14 (2) : 289-316. doi: 10.3934/nhm.2019012
References:
[1]

J. N. L. Albert and T. H. Epps, Self-assembly of block copolymer thin films, Materials Today, 13 (2010), 24-33.  doi: 10.1016/S1369-7021(10)70106-1.  Google Scholar

[2]

G. Allaire, Homogenization of the Navier-Stokes equations with a slip boundary condition, Comm. Pure Appl. Math., 44 (1989), 605-642.  doi: 10.1002/cpa.3160440602.  Google Scholar

[3]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.  doi: 10.1137/0523084.  Google Scholar

[4]

M. Anguiano and F. J. Suárez-Grau, Homogenization of an incompressible non-Newtonian flow through a thin porous medium, Z. Angew. Math. Phys., 68 (2017), Art. 45, 25 pp. doi: 10.1007/s00033-017-0790-z.  Google Scholar

[5]

T. ArbogastJ. Douglas and U. Hornung, Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal., 21 (1990), 823-836.  doi: 10.1137/0521046.  Google Scholar

[6]

A. BourgeatS. Luckhaus and A. Mikelić, Convergence of the homogenization process for a double-porosity model of immiscible two-phase flow, SIAM J. Math.Anal., 27 (1996), 1520-1543.  doi: 10.1137/S0036141094276457.  Google Scholar

[7]

A. Capatina and H. Ene, Homogenisation of the Stokes problem with a pure non-homogeneous slip boundary condition by the periodic unfolding method, Euro. J. of Applied Mathematics, 22 (2011), 333-345.  doi: 10.1017/S0956792511000088.  Google Scholar

[8]

D. Cioranescu and J. Saint Jean Paulin, Homogenization in open sets with holes, J. Math. Anal. Appl., 71 (1979), 590-607.  doi: 10.1016/0022-247X(79)90211-7.  Google Scholar

[9]

D. Cioranescu and P. Donato, Homogénéisation du problème du Neumann non homogène dans des ouverts perforés, Asymptotic Analysis, 1 (1988), 115-138.   Google Scholar

[10]

D. Cioranescu and P. Donato, Exact internal controllability in perforated domains, J. Math. Pures Appl., 68 (1989), 185-213.   Google Scholar

[11]

D. Cioranescu and J. Saint Jean Paulin, Truss structures: Fourier conditions and eigenvalue problems, in Boundary Control and Boundary Variation (Ed. J.P. Zolezio), Springer-Verlag, 178 (1992), 125-141. doi: 10.1007/BFb0006691.  Google Scholar

[12]

D. CioranescuP. Donato and H. Ene, Homogenization of the Stokes problem with non homogeneous slip boundary conditions, Math. Meth. Appl. Sci., 19 (1996), 857-881.  doi: 10.1002/(SICI)1099-1476(19960725)19:11<857::AID-MMA798>3.0.CO;2-D.  Google Scholar

[13]

D. CioranescuA. Damlamian and G. Griso, Periodic unfolding and homogenization, C.R. Acad. Sci. Paris Ser. I, 335 (2002), 99-104.  doi: 10.1016/S1631-073X(02)02429-9.  Google Scholar

[14]

D. CioranescuP. Donato and R. Zaki, Periodic unfolding and Robin problems in perforated domains, C. R. Math., 342 (2006), 469-474.  doi: 10.1016/j.crma.2006.01.028.  Google Scholar

[15]

D. CioranescuP. Donato and R. Zaki, The periodic unfolding method in perforated domains, Portugaliae Mathematica, 63 (2006), 467-496.   Google Scholar

[16]

D. CioranescuA. DamlamianP. DonatoG. Griso and R. Zaki, The periodic unfolding method in domains with holes, SIAM J. of Math. Anal., 44 (2012), 718-760.  doi: 10.1137/100817942.  Google Scholar

[17]

C. Conca, On the application of the homogenization theory to a class of problems arising in fluid mechanics, J. Math. Pures Appl., 64 (1985), 31-75.   Google Scholar

[18]

P. Donato and Z. Yang, The period unfolding method for the wave equations in domains with holes, Advances in Mathematical Sciences and Applications, 22 (2012), 521-551.   Google Scholar

[19]

P. Donato and Z. Yang, The periodic unfolding method for the heat equation in perforated domains, Science China Mathematics, 59 (2016), 891-906.  doi: 10.1007/s11425-015-5103-4.  Google Scholar

[20]

H. Ene and E. Sanchez-Palencia, Equation et phénomenes de surface pour l'écoulement dans un modèle de milieux poreux, J. Mech., 14 (1975), 73-108.   Google Scholar

[21]

R. A. FarrellT. G. FitzgeraldD. BorahJ. D. Holmes and M. A. Morris, Chemical Interactions and Their Role in the Microphase Separation of Block Copolymer Thin Films, Int. J. of Molecular Sci., 10 (2009), 3671-3712.  doi: 10.3390/ijms10093671.  Google Scholar

[22]

V. FrishfeldsT. S. Lundström and A. Jakovics, Lattice gas analysis of liquid front in non-crimp fabrics, Transp. Porous Med., 84 (2011), 75-93.  doi: 10.1007/s11242-009-9485-z.  Google Scholar

[23]

W. Jeon and C. B. Shin, Design and simulation of passive mixing in microfluidic systems with geometric variations, Chem. Eng. J., 152 (2009), 575-582.  doi: 10.1016/j.cej.2009.05.035.  Google Scholar

[24]

J.-L. Lions and E. Magenes, Problèmes aux Limites non Homogènes et Applications, Dunod, Paris, 1968.  Google Scholar

[25]

T. S. LundströmS. Toll and J. M. Håkanson, Measurements of the permeability tensor of compressed fibre beds, Transp. Porous Med., 47 (2002), 363-380.   Google Scholar

[26]

S. Marušić and E. Marušić-Paloka, Two-scale convergence for thin domain and its applications to some lower-dimensional model in fluid mechanics, Asymptot. Anal., 23 (2000), 23-57.   Google Scholar

[27]

J. Nečas, Les méthodes Directes en Théorie des Équations Elliptiques, Masson, Paris, 1967.  Google Scholar

[28]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623.  doi: 10.1137/0520043.  Google Scholar

[29]

M. Nordlund and T. S. Lundström, Effect of multi-scale porosity in local permeability modelling of non-crimp fabrics, Transp. Porous Med., 73 (2008), 109-124.  doi: 10.1007/s11242-007-9161-0.  Google Scholar

[30]

C. ParkJ. Yoon and E. L. Thomas, Enabling nanotechnology with self assembled block copolymer patterns, Polymer, 44 (2003), 6725-6760.  doi: 10.1016/j.polymer.2003.08.011.  Google Scholar

[31]

F. F. Reuss, Notice sur un Nouvel Effet de L'electricité Galvanique, Mémoire Soc. Sup. Imp. de Moscou, 1809. Google Scholar

[32]

E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics, 127. Springer-Verlag, Berlin-New York, 1980.  Google Scholar

[33]

F. SinghB. Stoeber and S.I. Green, Micro-PIV measurement of flow upstream of papermaking forming fabrics, Transp. Porous Med., 107 (2015), 435-448.  doi: 10.1007/s11242-014-0447-8.  Google Scholar

[34]

H. Tan and K. M. Pillai, Multiscale modeling of unsaturated flow in dual-scale fiber preforms of liquid composite molding I: Isothermal flows, Compos. Part A Appl. Sci. Manuf., 43 (2012), 1-13.   Google Scholar

[35]

L. Tartar, Incompressible fluid flow in a porous medium convergence of the homogenization process., in Appendix to Lecture Notes in Physics, 127 (1980). Google Scholar

[36]

M. Vanninathan, Homogenization of eigenvalues problems in perforated domains, Proc. Indian Acad. of Science, 90 (1981), 239-271.  doi: 10.1007/BF02838079.  Google Scholar

[37]

R. Zaki, Homogenization of a Stokes problem in a porous medium by the periodic unfolding method, Asymptotic Analysis, 79 (2012), 229-250.   Google Scholar

show all references

References:
[1]

J. N. L. Albert and T. H. Epps, Self-assembly of block copolymer thin films, Materials Today, 13 (2010), 24-33.  doi: 10.1016/S1369-7021(10)70106-1.  Google Scholar

[2]

G. Allaire, Homogenization of the Navier-Stokes equations with a slip boundary condition, Comm. Pure Appl. Math., 44 (1989), 605-642.  doi: 10.1002/cpa.3160440602.  Google Scholar

[3]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.  doi: 10.1137/0523084.  Google Scholar

[4]

M. Anguiano and F. J. Suárez-Grau, Homogenization of an incompressible non-Newtonian flow through a thin porous medium, Z. Angew. Math. Phys., 68 (2017), Art. 45, 25 pp. doi: 10.1007/s00033-017-0790-z.  Google Scholar

[5]

T. ArbogastJ. Douglas and U. Hornung, Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal., 21 (1990), 823-836.  doi: 10.1137/0521046.  Google Scholar

[6]

A. BourgeatS. Luckhaus and A. Mikelić, Convergence of the homogenization process for a double-porosity model of immiscible two-phase flow, SIAM J. Math.Anal., 27 (1996), 1520-1543.  doi: 10.1137/S0036141094276457.  Google Scholar

[7]

A. Capatina and H. Ene, Homogenisation of the Stokes problem with a pure non-homogeneous slip boundary condition by the periodic unfolding method, Euro. J. of Applied Mathematics, 22 (2011), 333-345.  doi: 10.1017/S0956792511000088.  Google Scholar

[8]

D. Cioranescu and J. Saint Jean Paulin, Homogenization in open sets with holes, J. Math. Anal. Appl., 71 (1979), 590-607.  doi: 10.1016/0022-247X(79)90211-7.  Google Scholar

[9]

D. Cioranescu and P. Donato, Homogénéisation du problème du Neumann non homogène dans des ouverts perforés, Asymptotic Analysis, 1 (1988), 115-138.   Google Scholar

[10]

D. Cioranescu and P. Donato, Exact internal controllability in perforated domains, J. Math. Pures Appl., 68 (1989), 185-213.   Google Scholar

[11]

D. Cioranescu and J. Saint Jean Paulin, Truss structures: Fourier conditions and eigenvalue problems, in Boundary Control and Boundary Variation (Ed. J.P. Zolezio), Springer-Verlag, 178 (1992), 125-141. doi: 10.1007/BFb0006691.  Google Scholar

[12]

D. CioranescuP. Donato and H. Ene, Homogenization of the Stokes problem with non homogeneous slip boundary conditions, Math. Meth. Appl. Sci., 19 (1996), 857-881.  doi: 10.1002/(SICI)1099-1476(19960725)19:11<857::AID-MMA798>3.0.CO;2-D.  Google Scholar

[13]

D. CioranescuA. Damlamian and G. Griso, Periodic unfolding and homogenization, C.R. Acad. Sci. Paris Ser. I, 335 (2002), 99-104.  doi: 10.1016/S1631-073X(02)02429-9.  Google Scholar

[14]

D. CioranescuP. Donato and R. Zaki, Periodic unfolding and Robin problems in perforated domains, C. R. Math., 342 (2006), 469-474.  doi: 10.1016/j.crma.2006.01.028.  Google Scholar

[15]

D. CioranescuP. Donato and R. Zaki, The periodic unfolding method in perforated domains, Portugaliae Mathematica, 63 (2006), 467-496.   Google Scholar

[16]

D. CioranescuA. DamlamianP. DonatoG. Griso and R. Zaki, The periodic unfolding method in domains with holes, SIAM J. of Math. Anal., 44 (2012), 718-760.  doi: 10.1137/100817942.  Google Scholar

[17]

C. Conca, On the application of the homogenization theory to a class of problems arising in fluid mechanics, J. Math. Pures Appl., 64 (1985), 31-75.   Google Scholar

[18]

P. Donato and Z. Yang, The period unfolding method for the wave equations in domains with holes, Advances in Mathematical Sciences and Applications, 22 (2012), 521-551.   Google Scholar

[19]

P. Donato and Z. Yang, The periodic unfolding method for the heat equation in perforated domains, Science China Mathematics, 59 (2016), 891-906.  doi: 10.1007/s11425-015-5103-4.  Google Scholar

[20]

H. Ene and E. Sanchez-Palencia, Equation et phénomenes de surface pour l'écoulement dans un modèle de milieux poreux, J. Mech., 14 (1975), 73-108.   Google Scholar

[21]

R. A. FarrellT. G. FitzgeraldD. BorahJ. D. Holmes and M. A. Morris, Chemical Interactions and Their Role in the Microphase Separation of Block Copolymer Thin Films, Int. J. of Molecular Sci., 10 (2009), 3671-3712.  doi: 10.3390/ijms10093671.  Google Scholar

[22]

V. FrishfeldsT. S. Lundström and A. Jakovics, Lattice gas analysis of liquid front in non-crimp fabrics, Transp. Porous Med., 84 (2011), 75-93.  doi: 10.1007/s11242-009-9485-z.  Google Scholar

[23]

W. Jeon and C. B. Shin, Design and simulation of passive mixing in microfluidic systems with geometric variations, Chem. Eng. J., 152 (2009), 575-582.  doi: 10.1016/j.cej.2009.05.035.  Google Scholar

[24]

J.-L. Lions and E. Magenes, Problèmes aux Limites non Homogènes et Applications, Dunod, Paris, 1968.  Google Scholar

[25]

T. S. LundströmS. Toll and J. M. Håkanson, Measurements of the permeability tensor of compressed fibre beds, Transp. Porous Med., 47 (2002), 363-380.   Google Scholar

[26]

S. Marušić and E. Marušić-Paloka, Two-scale convergence for thin domain and its applications to some lower-dimensional model in fluid mechanics, Asymptot. Anal., 23 (2000), 23-57.   Google Scholar

[27]

J. Nečas, Les méthodes Directes en Théorie des Équations Elliptiques, Masson, Paris, 1967.  Google Scholar

[28]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623.  doi: 10.1137/0520043.  Google Scholar

[29]

M. Nordlund and T. S. Lundström, Effect of multi-scale porosity in local permeability modelling of non-crimp fabrics, Transp. Porous Med., 73 (2008), 109-124.  doi: 10.1007/s11242-007-9161-0.  Google Scholar

[30]

C. ParkJ. Yoon and E. L. Thomas, Enabling nanotechnology with self assembled block copolymer patterns, Polymer, 44 (2003), 6725-6760.  doi: 10.1016/j.polymer.2003.08.011.  Google Scholar

[31]

F. F. Reuss, Notice sur un Nouvel Effet de L'electricité Galvanique, Mémoire Soc. Sup. Imp. de Moscou, 1809. Google Scholar

[32]

E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics, 127. Springer-Verlag, Berlin-New York, 1980.  Google Scholar

[33]

F. SinghB. Stoeber and S.I. Green, Micro-PIV measurement of flow upstream of papermaking forming fabrics, Transp. Porous Med., 107 (2015), 435-448.  doi: 10.1007/s11242-014-0447-8.  Google Scholar

[34]

H. Tan and K. M. Pillai, Multiscale modeling of unsaturated flow in dual-scale fiber preforms of liquid composite molding I: Isothermal flows, Compos. Part A Appl. Sci. Manuf., 43 (2012), 1-13.   Google Scholar

[35]

L. Tartar, Incompressible fluid flow in a porous medium convergence of the homogenization process., in Appendix to Lecture Notes in Physics, 127 (1980). Google Scholar

[36]

M. Vanninathan, Homogenization of eigenvalues problems in perforated domains, Proc. Indian Acad. of Science, 90 (1981), 239-271.  doi: 10.1007/BF02838079.  Google Scholar

[37]

R. Zaki, Homogenization of a Stokes problem in a porous medium by the periodic unfolding method, Asymptotic Analysis, 79 (2012), 229-250.   Google Scholar

Figure 1.  Views of a periodic cell in 2D (left) and 3D (right)
Figure 2.  View of $ \omega_\varepsilon $
Figure 3.  Views of the domain $ \Omega_\varepsilon $ (left) and $ \Lambda_\varepsilon $ (right)
[1]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[2]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[3]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[4]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[5]

Sergio Conti, Georg Dolzmann. Optimal laminates in single-slip elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 1-16. doi: 10.3934/dcdss.2020302

[6]

Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001

[7]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[8]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[9]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[10]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[11]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[12]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[13]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[14]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[15]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[16]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[17]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[18]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[19]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[20]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (127)
  • HTML views (351)
  • Cited by (0)

[Back to Top]