[1]
|
P.Ø. Andersen, Y. Qiao, D. C. Standnes and S. Evje, Co-current spontaneous imbibition in porous media with the dynamics of viscous coupling and capillary back pressure, SPE J., 24 (2019), 158-177.
doi: 10.2118/190267-MS.
|
[2]
|
T. Arbogast, The existence of weak solutions to single porosity and simple dual-porosity models of two-phase incompressible flow, Nonlinear Anal., 19 (1992), 1009-1031.
doi: 10.1016/0362-546X(92)90121-T.
|
[3]
|
J. Bear and Y. Bachmat, Introduction to Modeling of Transport Phenomena in Porous Media, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1990.
doi: 10.1007/978-94-009-1926-6.
|
[4]
|
D. Bresch, X. D. Huang and J. Li, Global weak solutions to one-dimensional non-conservative viscous compressible two-phase system, Comm. Math. Phys., 309 (2012), 737-755.
doi: 10.1007/s00220-011-1379-6.
|
[5]
|
C. Cances, T. O. Gallouet and L. Monsaingeon, The gradient flow structure of immiscible incompressible two-phase flows in porous media, C. R. Acad. Sci. Paris Ser. I Math., 353 (2015), 985-989.
doi: 10.1016/j.crma.2015.09.021.
|
[6]
|
C. Cances and M. Pierre, An existence result for multidimensional immiscible two-phase flows with discontinuous capillary pressure field, SIAM J. Math. Anal., 44 (2012), 966-992.
doi: 10.1137/11082943X.
|
[7]
|
X. Cao and I. S. Pop, Degenerate two-phase porous media flow model with dynamic capillarity, J. Diff. Eqs., 260 (2016), 2418-2456.
doi: 10.1016/j.jde.2015.10.008.
|
[8]
|
Z. Chen, Degenerate two-phase incompressible flow: Ⅰ. Existence, uniqueness and regularity of a weak solution, J. Diff. Eqs., 171 (2001), 203-232.
doi: 10.1006/jdeq.2000.3848.
|
[9]
|
G. M. Coclite, S. Mishra, N. H. Risebro and F. Weber, Analysis and numerical approximation of Brinkman regularization of two-phase flows in porous media, Comput. Geosci., 18 (2014), 637-659.
doi: 10.1007/s10596-014-9410-6.
|
[10]
|
J. M. Delhaye, M. Giot and M. L. Riethmuller, Thermohydraulics of Two-Phase Systems for Industrial Design and Nuclear Engineering, Von Karman Institute, McGraw-Hill, New York, 1981.
|
[11]
|
D. A. Drew and S. L. Passman, Theory of Multicomponent Fluids, Springer, 1999.
doi: 10.1007/b97678.
|
[12]
|
C. J. van Duijn, Y. Fan, L. A. Peletier and I. S. Pop, Travelling wave solutions for degenerate pseudo-parabolic equation modelling two-phase flow in porous media, Nonlinear Anal. Real World Applications, 14 (2013), 1361-1383.
doi: 10.1016/j.nonrwa.2012.10.002.
|
[13]
|
C. J. van Duijn, L. A. Peletier and I. S. Pop, A new class of entropy solutions of the Buckley-Leverett equation, SIAM J. Math. Anal., 39 (2007), 507-536.
doi: 10.1137/05064518X.
|
[14]
|
S. Evje, An integrative multiphase model for cancer cell migration under influence of physical cues from the microenvironment, Chem. Eng. Sci., 165 (2017), 240-259.
doi: 10.1016/j.ces.2017.02.045.
|
[15]
|
S. Evje and H. Y. Wen, Analysis of a compressible two-fluid Stokes system with constant viscosity, J. Math. Fluid Mech., 17 (2015), 423-436.
doi: 10.1007/s00021-015-0215-8.
|
[16]
|
S. Evje and H. Y. Wen, Stability of a compressible two-fluid hyperbolic-elliptic system arising in fluid mechanics, Nonlin. Anal.: Real World Applications, 31 (2016), 610-629.
doi: 10.1016/j.nonrwa.2016.03.011.
|
[17]
|
S. Evje, W. Wang and H. Y. Wen, Global well-posedness and decay rates of strong solutions to a non-conservative compressible two-fluid model, Arch. Rat. Mech. Anal., 221 (2016), 1285-1316.
doi: 10.1007/s00205-016-0984-0.
|
[18]
|
S. Evje and H. Y. Wen, A Stokes two-fluid model for cell migration that can account for physical cues in the microenvironment, SIAM J. Math. Anal., 50 (2018), 86-118.
doi: 10.1137/16M1078185.
|
[19]
|
C. Galusinski and M. Saad, On a degenerate parabolic system for compressible immiscible two-phase flows in porous media, Adv. Diff. Eqs., 9 (2004), 1235-1278.
|
[20]
|
C. Galusinski and M. Saad, A nonlinear degenerate system modeling water-gas in porous media, Disc. Cont. Dyn. Syst., 9 (2008), 281-308.
doi: 10.3934/dcdsb.2008.9.281.
|
[21]
|
C. Galusinski and M. Saad, Two compressible immiscible fluids in porous media, J. Diff. Eqs., 244 (2008), 1741-1783.
doi: 10.1016/j.jde.2008.01.013.
|
[22]
|
S. M. Hassanizadeh, Derivation of basic equations of mass transport in porous media, Part 2. Generalized Darcy's and Fick's laws, Adv. Water Resour., 9 (1986), 207-222.
doi: 10.1016/0309-1708(86)90025-4.
|
[23]
|
S. M. Hassanizadeh and W. G. Gray, Toward an improved description of the physics of two-phase flow, Adv. Water Resour., 16 (1993), 53-67.
doi: 10.1016/0309-1708(93)90029-F.
|
[24]
|
S. M. Hassanizadeh and W. G. Gray, Thermodynamic basis of capillary pressure in porous media, Water Resour. Res., 28 (1993), 3389-3405.
doi: 10.1029/93WR01495.
|
[25]
|
R. Juanes, Nonequilibrium effects in models of three-phase flow in porous media, Adv. Wat. Res., 31 (2008), 661-673.
doi: 10.1016/j.advwatres.2007.12.005.
|
[26]
|
Z. Khalil and M. Saad, Degenerate two-phase compressible immiscible flow in porous media: The case where the density of each phase depends on its own pressure, Math. Comput. Simulation, 81 (2011), 2225-2233.
doi: 10.1016/j.matcom.2010.12.012.
|
[27]
|
M. Krotkiewski, I. Ligaarden, K.-A. Lie and D. W. Schmid, On the importance of the Stokes-Brikman equations for computing effective permeability in carbonate-karst reservoirs, Comm. Comput. Phys., 10 (2011), 1315-1332.
|
[28]
|
L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Course of Theoretical Physics, 6, Pergamon
Press, 1984.
|
[29]
|
G. Lemon, J. R. King, H. M. Byrne, O. E. Jensen and K. M. Shakesheff, Mathematical modelling of engineered tissue growth using a multiphase porous flow mixture theory, J. Math. Biol., 52 (2006), 571-594.
doi: 10.1007/s00285-005-0363-1.
|
[30]
|
M. Muskat, Physical Principles of Oil Production, McGraw-Hill, New York, 1949.
|
[31]
|
Y. Qiao, P.Ø. Andersen, S. Evje and D. C. Standnes, A mixture theory approach to model co- and counter-current two-phase flow in porous media accounting for viscous coupling, Advances Wat. Res., 112 (2018), 170-188.
doi: 10.1016/j.advwatres.2017.12.016.
|
[32]
|
K. R. Rajagopal, On a hierarchy of approximate models for flows of incompressible fluids through porous solids, Math. Mod. Met. Appl. Sci., 17 (2007), 215-252.
doi: 10.1142/S0218202507001899.
|
[33]
|
B. Saad and M. Saad, Study of full implicit petroleum engineering finite volume scheme for compressible two phase flow in porous media, SIAM J. Numer. Anal., 51 (2013), 716-741.
doi: 10.1137/120869092.
|
[34]
|
M. M. Schuff, J. P. Gore and E. A. Nauman, A mixture theory model of fluid and solute transport in the microvasculature of normal and malignant tissues. I. Theory, J. Math. Biol., 66 (2013), 1179-1207.
doi: 10.1007/s00285-012-0528-7.
|
[35]
|
D. C. Standnes, S. Evje and P.Ø. Andersen, A novel relative permeability model based on mixture theory approach accounting for solid-fluid and fluid-fluid interactions, Tran. Por. Media, 119 (2017), 707-738.
doi: 10.1007/s11242-017-0907-z.
|
[36]
|
D. C. Standnes and P.Ø. Andersen, Analysis of the impact of fluid viscosities on the rate of countercurrent spontaneous imbibition, Energy & Fuels, 31 (2017), 6928-6940.
|
[37]
|
J. Urdal, J. O. Waldeland and S. Evje, Enhanced cancer cell invasion caused by fibroblasts when fluid flow is present, Biomech. Model. Mechanobiol., preprint, (2019).
doi: 10.1007/s10237-019-01128-2.
|
[38]
|
F. J. Valdes-Parada, J. A. Ochoa-Tapia and J. Alvarez-Ramirez, On the effective viscosity for the Darcy–Brinkman equation, Physica A, 385 (2007), 69-79.
doi: 10.1016/j.physa.2007.06.012.
|
[39]
|
J. O. Waldeland and S. Evje, A multiphase model for exploring cancer cell migration driven by autologous chemotaxis, Chem. Eng. Sci., 191 (2018), 268-287.
|
[40]
|
J. O. Waldeland and S. Evje, Competing tumor cell migration mechanisms caused by interstitial fluid flow, J. Biomech., 81 (2018), 22-35.
|
[41]
|
L. Wang, L.-P. Wang, Z. Guo and J. Mi, Volume-averaged macroscopic equation for fluid flow in moving porous media, Int. J. Heat Mass Tran., 82 (2015), 357-368.
doi: 10.1016/j.ijheatmasstransfer.2014.11.056.
|
[42]
|
Y. S. Wu, Multiphase Fluid Flow in Porous and Fractured Reservoirs, Elsevier, 2016.
|