We study systems of elliptic equations $ -\Delta u(x)+F_{u}(x, u) = 0 $ with potentials $ F\in C^{2}({\mathbb{R}}^{n}, {\mathbb{R}}^{m}) $ which are periodic and even in all their variables. We show that if $ F(x, u) $ has flip symmetry with respect to two of the components of $ x $ and if the minimal periodic solutions are not degenerate then the system has saddle type solutions on $ {\mathbb{R}}^{n} $.
Citation: |
[1] | S. Alama, L. Bronsard and C. Gui, Stationary layered solutions in ${\mathbb{R}}^{2}$ for an Allen-Cahn system with multiple well potential, Calc. Var. Partial Differential Equations, 5 (1997), 359–390. doi: 10.1007/s005260050071. |
[2] | F. Alessio, G. Autuori and P. Montecchiari, Saddle type solutions for a class of reversible elliptic equations, Adv. Differential Equations, 21 (2016), 1-30. |
[3] | F. Alessio, M. L. Bertotti and P. Montecchiari, Multibump solutions to possibly degenerate equilibria for almost periodic Lagrangian systems, Z. Angew. Math. Phys., 50 (1999), 860-891. doi: 10.1007/s000330050184. |
[4] | F. Alessio, A. Calamai and P. Montecchiari, Saddle type solutions to a class of semilinear elliptic equations, Adv. Differential Equations, 12 (2007), 361-380. |
[5] | F. Alessio, C. Gui and P. Montecchiari, Saddle solutions to Allen-Cahn equations in doubly periodic media, Indiana Univ. Math. J., 65 (2016), 199-221. doi: 10.1512/iumj.2016.65.5772. |
[6] | F. Alessio and P. Montecchiari, Layered solutions with multiple asymptotes for non autonomous Allen-Cahn equations in ${\mathbb{R}}^3$, Calc. Var. Partial Differential Equations, 46 (2013), 591-622. doi: 10.1007/s00526-012-0495-2. |
[7] | F. Alessio and P. Montecchiari, Saddle solutions for bistable symmetric semilinear elliptic equations, NoDEA Nonlinear Differential Equation Appl., 20 (2013), 1317-1346. doi: 10.1007/s00030-012-0210-1. |
[8] | F. Alessio and P. Montecchiari, Multiplicity of layered solutions for Allen-Cahn systems with symmetric double well potential, J. Differential Equations, 257 (2014), 4572-4599. doi: 10.1016/j.jde.2014.09.001. |
[9] | S. Aubry and P. Y. LeDaeron, The discrete Frenkel–Kantorova model and its extensions I–Exact results for the ground states, Physica, 8D (1983), 381-422. doi: 10.1016/0167-2789(83)90233-6. |
[10] | U. Bessi, Many solutions of elliptic problems on ${\mathbb{R}}^{n}$ of irrational slope, Comm. Partial Differential Equations, 30 (2005), 1773-1804. doi: 10.1080/03605300500299992. |
[11] | U. Bessi, Slope-changing solutions of elliptic problems on ${\mathbb{R}}^n$, Nonlinear Anal., 68 (2008), 3923-3947. doi: 10.1016/j.na.2007.04.031. |
[12] | S. Bolotin and P. H. Rabinowitz, Hybrid mountain pass homoclinic solutions of a class of semilinear elliptic PDEs, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 103-128. doi: 10.1016/j.anihpc.2013.02.003. |
[13] | V. Bangert, On minimal laminations of the torus, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 95-138. doi: 10.1016/S0294-1449(16)30328-6. |
[14] | X. Cabré and J. Terra, Saddle-shaped solutions of bistable diffusion equations in all of ${\mathbb{R}}^{2m}$, J. Eur. Math. Soc. (JEMS), 11 (2009), 819-943. doi: 10.4171/JEMS/168. |
[15] | X. Cabré and J. Terra, Qualitative properties of saddle-shaped solutions to bistable diffusion equations, Comm. Partial Differential Equations, 35 (2010), 1923-1957. doi: 10.1080/03605302.2010.484039. |
[16] | H. Dang, P. C. Fife and L. A. Peletier, Saddle solutions of the bistable diffusion equation, Z. Angew. Math. Phys, 43 (1992), 984-998. doi: 10.1007/BF00916424. |
[17] | R. de la Llave and E. Valdinoci, A generalization of Aubry-Mather theory to partial differential equations and pseudo-differential equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1309-1344. doi: 10.1016/j.anihpc.2008.11.002. |
[18] | M. del Pino, M. Kowalczyk, F. Pacard and J. Wei, Multiple-end solutions to the Allen-Cahn equation in R2, J. Funct. Anal., 258 (2010), 458-503. doi: 10.1016/j.jfa.2009.04.020. |
[19] | C. Gui, Symmetry of some entire solutions to the Allen-Cahn equation in two dimensions, J. Differential Equations, 252 (2012), 5853-5874. doi: 10.1016/j.jde.2012.03.004. |
[20] | C. Gui and M. Schatzman, Symmetric quadruple phase transitions, Indiana Univ. Math. J., 57 (2008), 781-836. doi: 10.1512/iumj.2008.57.3089. |
[21] | M. Kowalczyk and Y. Liu, Nondegeneracy of the saddle solution of the Allen-Cahn equation, Proc. Amer. Math. Soc., 139 (2011), 4319-4329. doi: 10.1090/S0002-9939-2011-11217-6. |
[22] | M. Kowalczyk, Y. Liu and F. Pacard, The space of 4-ended solutions to the Allen-Cahn equation on the plane, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 761-781. doi: 10.1016/j.anihpc.2012.04.003. |
[23] | J. N. Mather, Existence of quasi–periodic orbits for twist homeomorphisms of the annulus, Topology, 21 (1982), 457-467. doi: 10.1016/0040-9383(82)90023-4. |
[24] | J. N. Mather, Variational construction of connecting orbits, Ann. Inst. Fourier (Grenoble), 43 (1993), 1349-1386. doi: 10.5802/aif.1377. |
[25] | J. Moser, Minimal solutions of a variational problems on a torus, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 229-272. doi: 10.1016/S0294-1449(16)30387-0. |
[26] | P. Montecchiari and P. H. Rabinowitz, On the existence of multi-transition solutions for a class of elliptic systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 199-219. doi: 10.1016/j.anihpc.2014.10.001. |
[27] | F. Pacard and J. Wei, Stable solutions of the Allen-Cahn equation in dimension $8$ and minimal cones, J. Funct. Anal., 264 (2013), 1131-1167. doi: 10.1016/j.jfa.2012.03.010. |
[28] | P. H. Rabinowitz, Connecting orbits for a reversible Hamiltonian system, Ergodic Theory Dynam. Systems, 20 (2000), 1767-1784. doi: 10.1017/S0143385700000985. |
[29] | P. H. Rabinowitz, On a class of reversible elliptic systems, Netw. Heterog. Media, 7 (2012), 927-939. doi: 10.3934/nhm.2012.7.927. |
[30] | P. H. Rabinowitz, A note on a class of reversible elliptic systems, Adv. Nonlinear Stud., 12 (2012), 851-875. doi: 10.1515/ans-2012-0411. |
[31] | P. H. Rabinowitz and E. Stredulinsky, Extensions of Moser–Bangert Theory: Locally Minimal Solutions, Progr. Nonlinear Differential Equations Appl., 81, Birkhauser, Boston, 2011. |
[32] | M. Schatzman, On the stability of the saddle solution of Allen-Cahn's equation, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 1241-1275. doi: 10.1017/S0308210500030493. |
[33] | E. Valdinoci, Plane-like minimizers in periodic media: Jet flows and Ginzburg-Landau-type functionals, J. Reine Angew. Math., 574 (2004), 147-185. doi: 10.1515/crll.2004.068. |
The decomposition of the triangular set