
-
Previous Article
Opinion formation in voting processes under bounded confidence
- NHM Home
- This Issue
-
Next Article
Saddle solutions for a class of systems of periodic and reversible semilinear elliptic equations
Optimal reinforcing networks for elastic membranes
1. | Dipartimento di Matematica, Università di Pisa, l.go B. Pontecorvo 5, 56127 Pisa, Italy |
2. | Dipartimento di Matematica e an, 80126 Napoli, Italy |
3. | Laboratoire Jean Kuntzmann, Université Grenoble Alpes, 38041 Grenoble, France |
In this paper we study the optimal reinforcement of an elastic membrane, fixed at its boundary, by means of a network (connected one-dimensional structure), that has to be found in a suitable admissible class. We show the existence of an optimal network, and observe that such network carries a multiplicity that in principle can be strictly larger than one. Some numerical simulations are shown to confirm this issue and to illustrate the complexity of the optimal network when the total length becomes large.
References:
[1] |
G. Alberti and M. Ottolini,
On the structure of continua with finite length and Golab's semicontinuity theorem, Nonlinear Anal., 153 (2017), 35-55.
doi: 10.1016/j.na.2016.10.012. |
[2] |
E. Acerbi, G. Buttazzo and D. Percivale,
Thin inclusions in linear elasticity: A variational approach, J. Reine Angew. Math., 386 (1988), 99-115.
doi: 10.1515/crll.1988.386.99. |
[3] |
M. Beckmann,
A continuous model of transportation, Econometrica, 20 (1952), 643-660.
doi: 10.2307/1907646. |
[4] |
G. Bouchitté, G. Buttazzo and P. Seppecher,
Energies with respect to a measure and applications to low dimensional structures, Calc. Var. Partial Differential Equations, 5 (1996), 37-54.
doi: 10.1007/s005260050058. |
[5] |
L. Brasco, G. Carlier and F. Santambrogio,
Congested traffic dynamics, weak flows and very degenerate elliptic equations, J. Math. Pures Appl., 93 (2010), 652-671.
doi: 10.1016/j.matpur.2010.03.010. |
[6] |
G. Buttazzo, G. Carlier and S. Guarino Lo Bianco,
Optimal regions for congested transport, ESAIM Math. Model. Numer. Anal., 49 (2015), 1607-1619.
doi: 10.1051/m2an/2015022. |
[7] |
G. Buttazzo, É. Oudet and B. Velichkov,
A free boundary problem arising in PDE optimization, Calc. Var. Partial Differential Equations, 54 (2015), 3829-3856.
doi: 10.1007/s00526-015-0923-1. |
[8] |
G. Buttazzo, É. Oudet and E. Stepanov, Optimal transportation problems with free Dirichlet regions, in Variational Methods for Discontinuous Structures, Progr. Nonlinear Differential Equations Appl., 51, Birkhäuser, Basel, 2002, 41–65. |
[9] |
G. Buttazzo and F. Santambrogio,
Asymptotical compliance optimization for connected networks, Netw. Heterog. Media, 2 (2007), 761-777.
doi: 10.3934/nhm.2007.2.761. |
[10] |
G. Buttazzo, F. Santambrogio and N. Varchon,
Asymptotics of an optimal compliance-location problem, ESAIM Control Optim. Calc. Var., 12 (2006), 752-769.
doi: 10.1051/cocv:2006020. |
[11] |
G. Buttazzo and N. Varchon,
On the optimal reinforcement of an elastic membrane, Riv. Mat. Univ. Parma (Ser. 7), 4 (2005), 115-125.
|
[12] |
Y.-H. Dai and R. Fletcher,
New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds, Math. Program. (Ser. A), 106 (2006), 403-421.
doi: 10.1007/s10107-005-0595-2. |
[13] |
K. J. Falconer, The Geometry of Fractal Sets, Cambridge Tracts in Mathematics, 85, Cambridge University Press, Cambridge, 1986.
![]() ![]() |
[14] |
S. Golab,
Sur quelques points de la théorie de la longueur, Ann. Soc. Polon. Math., 7 (1929), 227-241.
|
[15] |
S. G. Johnson, The NLopt nonlinear-optimization package., Available from: http://ab-initio.mit.edu/nlopt. |
[16] |
S. J. N. Mosconi and P. Tilli,
Γ-convergence for the irrigation problem, J. Convex Anal., 12 (2005), 145-158.
|
[17] |
E. Sánchez-Palencia, Nonhomogeneous Media and Vibration Theory, Lecture Notes in Physics, 127, Springer-Verlag, Berlin-New York, 1980. |
[18] |
J. G. Wardrop,
Some theoretical aspects of road traffic research, Proceedings of the Institution of Civil Engineers, 1 (1952), 325-362.
doi: 10.1680/ipeds.1952.11362. |
show all references
References:
[1] |
G. Alberti and M. Ottolini,
On the structure of continua with finite length and Golab's semicontinuity theorem, Nonlinear Anal., 153 (2017), 35-55.
doi: 10.1016/j.na.2016.10.012. |
[2] |
E. Acerbi, G. Buttazzo and D. Percivale,
Thin inclusions in linear elasticity: A variational approach, J. Reine Angew. Math., 386 (1988), 99-115.
doi: 10.1515/crll.1988.386.99. |
[3] |
M. Beckmann,
A continuous model of transportation, Econometrica, 20 (1952), 643-660.
doi: 10.2307/1907646. |
[4] |
G. Bouchitté, G. Buttazzo and P. Seppecher,
Energies with respect to a measure and applications to low dimensional structures, Calc. Var. Partial Differential Equations, 5 (1996), 37-54.
doi: 10.1007/s005260050058. |
[5] |
L. Brasco, G. Carlier and F. Santambrogio,
Congested traffic dynamics, weak flows and very degenerate elliptic equations, J. Math. Pures Appl., 93 (2010), 652-671.
doi: 10.1016/j.matpur.2010.03.010. |
[6] |
G. Buttazzo, G. Carlier and S. Guarino Lo Bianco,
Optimal regions for congested transport, ESAIM Math. Model. Numer. Anal., 49 (2015), 1607-1619.
doi: 10.1051/m2an/2015022. |
[7] |
G. Buttazzo, É. Oudet and B. Velichkov,
A free boundary problem arising in PDE optimization, Calc. Var. Partial Differential Equations, 54 (2015), 3829-3856.
doi: 10.1007/s00526-015-0923-1. |
[8] |
G. Buttazzo, É. Oudet and E. Stepanov, Optimal transportation problems with free Dirichlet regions, in Variational Methods for Discontinuous Structures, Progr. Nonlinear Differential Equations Appl., 51, Birkhäuser, Basel, 2002, 41–65. |
[9] |
G. Buttazzo and F. Santambrogio,
Asymptotical compliance optimization for connected networks, Netw. Heterog. Media, 2 (2007), 761-777.
doi: 10.3934/nhm.2007.2.761. |
[10] |
G. Buttazzo, F. Santambrogio and N. Varchon,
Asymptotics of an optimal compliance-location problem, ESAIM Control Optim. Calc. Var., 12 (2006), 752-769.
doi: 10.1051/cocv:2006020. |
[11] |
G. Buttazzo and N. Varchon,
On the optimal reinforcement of an elastic membrane, Riv. Mat. Univ. Parma (Ser. 7), 4 (2005), 115-125.
|
[12] |
Y.-H. Dai and R. Fletcher,
New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds, Math. Program. (Ser. A), 106 (2006), 403-421.
doi: 10.1007/s10107-005-0595-2. |
[13] |
K. J. Falconer, The Geometry of Fractal Sets, Cambridge Tracts in Mathematics, 85, Cambridge University Press, Cambridge, 1986.
![]() ![]() |
[14] |
S. Golab,
Sur quelques points de la théorie de la longueur, Ann. Soc. Polon. Math., 7 (1929), 227-241.
|
[15] |
S. G. Johnson, The NLopt nonlinear-optimization package., Available from: http://ab-initio.mit.edu/nlopt. |
[16] |
S. J. N. Mosconi and P. Tilli,
Γ-convergence for the irrigation problem, J. Convex Anal., 12 (2005), 145-158.
|
[17] |
E. Sánchez-Palencia, Nonhomogeneous Media and Vibration Theory, Lecture Notes in Physics, 127, Springer-Verlag, Berlin-New York, 1980. |
[18] |
J. G. Wardrop,
Some theoretical aspects of road traffic research, Proceedings of the Institution of Civil Engineers, 1 (1952), 325-362.
doi: 10.1680/ipeds.1952.11362. |



Length constraint | Theoretical guesses | Computed optimal networks |
1 | -0.179471 (radius) | -0.178873 |
2 | -0.165095 (diameter) | -0.161944 |
3 | -0.152676 (star) | -0.149601 |
4 | -0.141969 (cross) | -0.138076 |
5 | - | -0.127661 |
6 | - | -0.117140 |
Length constraint | Theoretical guesses | Computed optimal networks |
1 | -0.179471 (radius) | -0.178873 |
2 | -0.165095 (diameter) | -0.161944 |
3 | -0.152676 (star) | -0.149601 |
4 | -0.141969 (cross) | -0.138076 |
5 | - | -0.127661 |
6 | - | -0.117140 |
[1] |
J. G. Simmonds. The hypercircle theorem for elastic shells and the accuracy of Novozhilov's simplified equations for general cylindrical shells. Discrete and Continuous Dynamical Systems - B, 2007, 7 (3) : 643-650. doi: 10.3934/dcdsb.2007.7.643 |
[2] |
Armando G. M. Neves. Eigenmodes and eigenfrequencies of vibrating elliptic membranes: a Klein oscillation theorem and numerical calculations. Communications on Pure and Applied Analysis, 2010, 9 (3) : 611-624. doi: 10.3934/cpaa.2010.9.611 |
[3] |
Gastão S. F. Frederico, Delfim F. M. Torres. Noether's symmetry Theorem for variational and optimal control problems with time delay. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 619-630. doi: 10.3934/naco.2012.2.619 |
[4] |
John Hubbard, Yulij Ilyashenko. A proof of Kolmogorov's theorem. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 367-385. doi: 10.3934/dcds.2004.10.367 |
[5] |
Rabah Amir, Igor V. Evstigneev. On Zermelo's theorem. Journal of Dynamics and Games, 2017, 4 (3) : 191-194. doi: 10.3934/jdg.2017011 |
[6] |
Qilin Wang, Shengji Li. Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1225-1234. doi: 10.3934/jimo.2014.10.1225 |
[7] |
Qilin Wang, Shengji Li. Semicontinuity of approximate solution mappings to generalized vector equilibrium problems. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1303-1309. doi: 10.3934/jimo.2016.12.1303 |
[8] |
Kenji Kimura, Jen-Chih Yao. Semicontinuity of solution mappings of parametric generalized strong vector equilibrium problems. Journal of Industrial and Management Optimization, 2008, 4 (1) : 167-181. doi: 10.3934/jimo.2008.4.167 |
[9] |
Alaa Hayek, Serge Nicaise, Zaynab Salloum, Ali Wehbe. Exponential and polynomial stability results for networks of elastic and thermo-elastic rods. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1183-1220. doi: 10.3934/dcdss.2021142 |
[10] |
Erik Kropat. Homogenization of optimal control problems on curvilinear networks with a periodic microstructure --Results on $\boldsymbol{S}$-homogenization and $\boldsymbol{Γ}$-convergence. Numerical Algebra, Control and Optimization, 2017, 7 (1) : 51-76. doi: 10.3934/naco.2017003 |
[11] |
Hahng-Yun Chu, Se-Hyun Ku, Jong-Suh Park. Conley's theorem for dispersive systems. Discrete and Continuous Dynamical Systems - S, 2015, 8 (2) : 313-321. doi: 10.3934/dcdss.2015.8.313 |
[12] |
Sergei Ivanov. On Helly's theorem in geodesic spaces. Electronic Research Announcements, 2014, 21: 109-112. doi: 10.3934/era.2014.21.109 |
[13] |
Yuan Xu, Xin Jin, Saiwei Wang, Yang Tang. Optimal synchronization control of multiple euler-lagrange systems via event-triggered reinforcement learning. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1495-1518. doi: 10.3934/dcdss.2020377 |
[14] |
Siniša Slijepčević. The Aubry-Mather theorem for driven generalized elastic chains. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2983-3011. doi: 10.3934/dcds.2014.34.2983 |
[15] |
C. R. Chen, S. J. Li. Semicontinuity of the solution set map to a set-valued weak vector variational inequality. Journal of Industrial and Management Optimization, 2007, 3 (3) : 519-528. doi: 10.3934/jimo.2007.3.519 |
[16] |
Yuan Li. Extremal solution and Liouville theorem for anisotropic elliptic equations. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4063-4082. doi: 10.3934/cpaa.2021144 |
[17] |
Zhong-Jie Han, Enrique Zuazua. Decay rates for elastic-thermoelastic star-shaped networks. Networks and Heterogeneous Media, 2017, 12 (3) : 461-488. doi: 10.3934/nhm.2017020 |
[18] |
Pengyan Wang, Pengcheng Niu. Liouville's theorem for a fractional elliptic system. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1545-1558. doi: 10.3934/dcds.2019067 |
[19] |
V. Niţicâ. Journé's theorem for $C^{n,\omega}$ regularity. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 413-425. doi: 10.3934/dcds.2008.22.413 |
[20] |
Jacques Féjoz. On "Arnold's theorem" on the stability of the solar system. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3555-3565. doi: 10.3934/dcds.2013.33.3555 |
2020 Impact Factor: 1.213
Tools
Metrics
Other articles
by authors
[Back to Top]