• Previous Article
    A local sensitivity and regularity analysis for the Vlasov-Poisson-Fokker-Planck system with multi-dimensional uncertainty and the spectral convergence of the stochastic Galerkin method
  • NHM Home
  • This Issue
  • Next Article
    On a model of target detection in molecular communication networks
December  2019, 14(4): 659-676. doi: 10.3934/nhm.2019026

Well-balanced scheme for gas-flow in pipeline networks

Institut für Geometrie und Praktische Mathematik, RWTH Aachen University, Templergraben 55, 52056 Aachen, Germany

* Corresponding author: Yogiraj Mantri

Received  June 2018 Revised  May 2019 Published  October 2019

Gas flow through pipeline networks can be described using $ 2\times 2 $ hyperbolic balance laws along with coupling conditions at nodes. The numerical solution at steady state is highly sensitive to these coupling conditions and also to the balance between flux and source terms within the pipes. To avoid spurious oscillations for near equilibrium flows, it is essential to design well-balanced schemes. Recently Chertock, Herty & Özcan[11] introduced a well-balanced method for general $ 2\times 2 $ systems of balance laws. In this paper, we simplify and extend this approach to a network of pipes. We prove well-balancing for different coupling conditions and for compressors stations, and demonstrate the advantage of the scheme by numerical experiments.

Citation: Yogiraj Mantri, Michael Herty, Sebastian Noelle. Well-balanced scheme for gas-flow in pipeline networks. Networks and Heterogeneous Media, 2019, 14 (4) : 659-676. doi: 10.3934/nhm.2019026
References:
[1]

E. AudusseF. BouchutM.-O. BristeauR. Klein and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM J. Sci. Comput., 25 (2004), 2050-2065.  doi: 10.1137/S1064827503431090.

[2]

M. K. BandaA.-S. Häck and M. Herty, Numerical discretization of coupling conditions by high-order schemes, J. Sci. Comput., 69 (2016), 122-145.  doi: 10.1007/s10915-016-0185-x.

[3]

M. K. BandaM. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295-314.  doi: 10.3934/nhm.2006.1.295.

[4]

M. K. BandaM. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41-56.  doi: 10.3934/nhm.2006.1.41.

[5]

A. BermúdezX. López and M. E. Vázquez-Cendón, Treating network junctions in finite volume solution of transient gas flow models, J. Comput. Phys., 344 (2017), 187-209.  doi: 10.1016/j.jcp.2017.04.066.

[6]

A. BollermannG. X. ChenA. Kurganov and S. Noelle, A well-balanced reconstruction of wet/dry fronts for the shallow water equations, J. Sci. Comput., 56 (2013), 267-290.  doi: 10.1007/s10915-012-9677-5.

[7]

R. Borsche and J. Kall, ADER schemes and high order coupling on networks of hyperbolic conservation laws, J. Comput. Phys., 273 (2014), 658-670.  doi: 10.1016/j.jcp.2014.05.042.

[8]

A. BressanS. ČanićM. GaravelloM. Herty and B. Piccoli, Flows on networks: Recent results and perspectives, EMS Surv. Math. Sci., 1 (2014), 47-111.  doi: 10.4171/EMSS/2.

[9]

J. BrouwerI. Gasser and M. Herty, Gas pipeline models revisited: Model hierarchies, nonisothermal models, and simulations of networks, Multiscale Model. Simul., 9 (2011), 601-623.  doi: 10.1137/100813580.

[10]

G. X. Chen and S. Noelle, A new hydrostatic reconstruction scheme based on subcell reconstructions, SIAM J. Numer. Anal., 55 (2017), 758-784.  doi: 10.1137/15M1053074.

[11]

A. ChertockM. Herty and Ş. N. Özcan, Well-balanced central-upwind schemes for $2\times 2$ system of balance laws, Theory, Numerics and Applications of Hyperbolic Problems. Ⅰ, Springer Proc. Math. Stat. Springer, Cham, 236 (2018), 345-361. 

[12]

R. M. ColomboG. GuerraM. Herty and V. Schleper, Optimal control in networks of pipes and canals, SIAM J. Control Optim., 48 (2009), 2032-2050.  doi: 10.1137/080716372.

[13]

R. M. ColomboM. Herty and V. Sachers, On $2\times 2$ conservation laws at a junction, SIAM J. Math. Anal., 40 (2008), 605-622.  doi: 10.1137/070690298.

[14]

R. M. Colombo and M. Garavello, A well posed Riemann problem for the $p$-system at a junction, Netw. Heterog. Media, 1 (2006), 495-511.  doi: 10.3934/nhm.2006.1.495.

[15]

R. M. Colombo and M. Garavello, On the Cauchy problem for the $p$-system at a junction, SIAM J. Math. Anal., 39 (2008), 1456-1471.  doi: 10.1137/060665841.

[16]

R. M. Colombo and C. Mauri, Euler system for compressible fluids at a junction, J. Hyperbolic Differ. Equ., 5 (2008), 547-568.  doi: 10.1142/S0219891608001593.

[17]

R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Interscience Publishers, Inc., New York, N. Y., 1948.

[18]

S. A. DyachenkoA. ZlotnikA. O. Korotkevich and M. Chertkov, Operator splitting method for simulation of dynamic flows in natural gas pipeline networks, Phys. D, 361 (2017), 1-11.  doi: 10.1016/j.physd.2017.09.002.

[19]

H. Egger, A robust conservative mixed finite element method for isentropic compressible flow on pipe networks, SIAM J. Sci. Comput., 40 (2018), A108–A129. doi: 10.1137/16M1094373.

[20]

E. GodlewskiK.-C. Le Thanh and P.-A. Raviart, The numerical interface coupling of nonlinear hyperbolic systems of conservation laws. Ⅱ. The case of systems, M2AN Math. Model. Numer. Anal., 39 (2005), 649-692.  doi: 10.1051/m2an:2005029.

[21]

M. GugatM. Herty and S. Müller, Coupling conditions for the transition from supersonic to subsonic fluid states, Netw. Heterog. Media, 12 (2017), 371-380.  doi: 10.3934/nhm.2017016.

[22]

M. Gugat and S. Ulbrich, The isothermal Euler equations for ideal gas with source term: Product solutions, flow reversal and no blow up, J. Math. Anal. Appl., 454 (2017), 439-452.  doi: 10.1016/j.jmaa.2017.04.064.

[23]

M. HertyJ. Mohring and V. Sachers, A new model for gas flow in pipe networks, Math. Methods Appl. Sci., 33 (2010), 845-855.  doi: 10.1002/mma.1197.

[24]

M. Herty and M. Seaïd, Simulation of transient gas flow at pipe-to-pipe intersections, Internat. J. Numer. Methods Fluids, 56 (2008), 485-506.  doi: 10.1002/fld.1531.

[25]

A. KurganovS. Noelle and G. Petrova, Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations, SIAM J. Sci. Comput., 23 (2001), 707-740.  doi: 10.1137/S1064827500373413.

[26]

A. Kurganov and E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations, J. Comput. Phys., 160 (2000), 241-282.  doi: 10.1006/jcph.2000.6459.

[27]

A. Morin and G. A. Reigstad, Pipe networks: Coupling constants in a junction for the isentropic euler equations, Energy Procedia, 64 (2015), 140-149.  doi: 10.1016/j.egypro.2015.01.017.

[28]

A. NaumannO. Kolb and M. Semplice, On a third order CWENO boundary treatment with application to networks of hyperbolic conservation laws, Appl. Math. Comput., 325 (2018), 252-270.  doi: 10.1016/j.amc.2017.12.041.

[29]

S. NoelleN. PankratzG. Puppo and J. R. Natvig, Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows, J. Comput. Phys., 213 (2006), 474-499.  doi: 10.1016/j.jcp.2005.08.019.

[30]

S. NoelleY. L. Xing and C.-W. Shu, High-order well-balanced finite volume WENO schemes for shallow water equation with moving water, J. Comput. Phys., 226 (2007), 29-58.  doi: 10.1016/j.jcp.2007.03.031.

[31]

A. Osiadacz, Nonlinear programming applied to the optimum control of a gas compressor station, Internat. J. Numer. Methods Engrg., 15 (1980), 1287-1301.  doi: 10.1002/nme.1620150902.

[32]

G. Puppo and G. Russo, Numerical Methods for Balance Laws, Quaderni di Matematica, 24. Department of Mathematics, Seconda Università di Napoli, Caserta, 2009.

[33]

G. A. Reigstad, Numerical network models and entropy principles for isothermal junction flow, Netw. Heterog. Media, 9 (2014), 65-95.  doi: 10.3934/nhm.2014.9.65.

[34]

G. A. Reigstad, Existence and uniqueness of solutions to the generalized {R}iemann problem for isentropic flow, SIAM J. Appl. Math., 75 (2015), 679-702.  doi: 10.1137/140962759.

[35]

G. A. ReigstadT. FlåttenN. Erland Haugen and T. Ytrehus, Coupling constants and the generalized Riemann problem for isothermal junction flow, J. Hyperbolic Differ. Equ., 12 (2015), 37-59.  doi: 10.1142/S0219891615500022.

show all references

References:
[1]

E. AudusseF. BouchutM.-O. BristeauR. Klein and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM J. Sci. Comput., 25 (2004), 2050-2065.  doi: 10.1137/S1064827503431090.

[2]

M. K. BandaA.-S. Häck and M. Herty, Numerical discretization of coupling conditions by high-order schemes, J. Sci. Comput., 69 (2016), 122-145.  doi: 10.1007/s10915-016-0185-x.

[3]

M. K. BandaM. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295-314.  doi: 10.3934/nhm.2006.1.295.

[4]

M. K. BandaM. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41-56.  doi: 10.3934/nhm.2006.1.41.

[5]

A. BermúdezX. López and M. E. Vázquez-Cendón, Treating network junctions in finite volume solution of transient gas flow models, J. Comput. Phys., 344 (2017), 187-209.  doi: 10.1016/j.jcp.2017.04.066.

[6]

A. BollermannG. X. ChenA. Kurganov and S. Noelle, A well-balanced reconstruction of wet/dry fronts for the shallow water equations, J. Sci. Comput., 56 (2013), 267-290.  doi: 10.1007/s10915-012-9677-5.

[7]

R. Borsche and J. Kall, ADER schemes and high order coupling on networks of hyperbolic conservation laws, J. Comput. Phys., 273 (2014), 658-670.  doi: 10.1016/j.jcp.2014.05.042.

[8]

A. BressanS. ČanićM. GaravelloM. Herty and B. Piccoli, Flows on networks: Recent results and perspectives, EMS Surv. Math. Sci., 1 (2014), 47-111.  doi: 10.4171/EMSS/2.

[9]

J. BrouwerI. Gasser and M. Herty, Gas pipeline models revisited: Model hierarchies, nonisothermal models, and simulations of networks, Multiscale Model. Simul., 9 (2011), 601-623.  doi: 10.1137/100813580.

[10]

G. X. Chen and S. Noelle, A new hydrostatic reconstruction scheme based on subcell reconstructions, SIAM J. Numer. Anal., 55 (2017), 758-784.  doi: 10.1137/15M1053074.

[11]

A. ChertockM. Herty and Ş. N. Özcan, Well-balanced central-upwind schemes for $2\times 2$ system of balance laws, Theory, Numerics and Applications of Hyperbolic Problems. Ⅰ, Springer Proc. Math. Stat. Springer, Cham, 236 (2018), 345-361. 

[12]

R. M. ColomboG. GuerraM. Herty and V. Schleper, Optimal control in networks of pipes and canals, SIAM J. Control Optim., 48 (2009), 2032-2050.  doi: 10.1137/080716372.

[13]

R. M. ColomboM. Herty and V. Sachers, On $2\times 2$ conservation laws at a junction, SIAM J. Math. Anal., 40 (2008), 605-622.  doi: 10.1137/070690298.

[14]

R. M. Colombo and M. Garavello, A well posed Riemann problem for the $p$-system at a junction, Netw. Heterog. Media, 1 (2006), 495-511.  doi: 10.3934/nhm.2006.1.495.

[15]

R. M. Colombo and M. Garavello, On the Cauchy problem for the $p$-system at a junction, SIAM J. Math. Anal., 39 (2008), 1456-1471.  doi: 10.1137/060665841.

[16]

R. M. Colombo and C. Mauri, Euler system for compressible fluids at a junction, J. Hyperbolic Differ. Equ., 5 (2008), 547-568.  doi: 10.1142/S0219891608001593.

[17]

R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Interscience Publishers, Inc., New York, N. Y., 1948.

[18]

S. A. DyachenkoA. ZlotnikA. O. Korotkevich and M. Chertkov, Operator splitting method for simulation of dynamic flows in natural gas pipeline networks, Phys. D, 361 (2017), 1-11.  doi: 10.1016/j.physd.2017.09.002.

[19]

H. Egger, A robust conservative mixed finite element method for isentropic compressible flow on pipe networks, SIAM J. Sci. Comput., 40 (2018), A108–A129. doi: 10.1137/16M1094373.

[20]

E. GodlewskiK.-C. Le Thanh and P.-A. Raviart, The numerical interface coupling of nonlinear hyperbolic systems of conservation laws. Ⅱ. The case of systems, M2AN Math. Model. Numer. Anal., 39 (2005), 649-692.  doi: 10.1051/m2an:2005029.

[21]

M. GugatM. Herty and S. Müller, Coupling conditions for the transition from supersonic to subsonic fluid states, Netw. Heterog. Media, 12 (2017), 371-380.  doi: 10.3934/nhm.2017016.

[22]

M. Gugat and S. Ulbrich, The isothermal Euler equations for ideal gas with source term: Product solutions, flow reversal and no blow up, J. Math. Anal. Appl., 454 (2017), 439-452.  doi: 10.1016/j.jmaa.2017.04.064.

[23]

M. HertyJ. Mohring and V. Sachers, A new model for gas flow in pipe networks, Math. Methods Appl. Sci., 33 (2010), 845-855.  doi: 10.1002/mma.1197.

[24]

M. Herty and M. Seaïd, Simulation of transient gas flow at pipe-to-pipe intersections, Internat. J. Numer. Methods Fluids, 56 (2008), 485-506.  doi: 10.1002/fld.1531.

[25]

A. KurganovS. Noelle and G. Petrova, Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations, SIAM J. Sci. Comput., 23 (2001), 707-740.  doi: 10.1137/S1064827500373413.

[26]

A. Kurganov and E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations, J. Comput. Phys., 160 (2000), 241-282.  doi: 10.1006/jcph.2000.6459.

[27]

A. Morin and G. A. Reigstad, Pipe networks: Coupling constants in a junction for the isentropic euler equations, Energy Procedia, 64 (2015), 140-149.  doi: 10.1016/j.egypro.2015.01.017.

[28]

A. NaumannO. Kolb and M. Semplice, On a third order CWENO boundary treatment with application to networks of hyperbolic conservation laws, Appl. Math. Comput., 325 (2018), 252-270.  doi: 10.1016/j.amc.2017.12.041.

[29]

S. NoelleN. PankratzG. Puppo and J. R. Natvig, Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows, J. Comput. Phys., 213 (2006), 474-499.  doi: 10.1016/j.jcp.2005.08.019.

[30]

S. NoelleY. L. Xing and C.-W. Shu, High-order well-balanced finite volume WENO schemes for shallow water equation with moving water, J. Comput. Phys., 226 (2007), 29-58.  doi: 10.1016/j.jcp.2007.03.031.

[31]

A. Osiadacz, Nonlinear programming applied to the optimum control of a gas compressor station, Internat. J. Numer. Methods Engrg., 15 (1980), 1287-1301.  doi: 10.1002/nme.1620150902.

[32]

G. Puppo and G. Russo, Numerical Methods for Balance Laws, Quaderni di Matematica, 24. Department of Mathematics, Seconda Università di Napoli, Caserta, 2009.

[33]

G. A. Reigstad, Numerical network models and entropy principles for isothermal junction flow, Netw. Heterog. Media, 9 (2014), 65-95.  doi: 10.3934/nhm.2014.9.65.

[34]

G. A. Reigstad, Existence and uniqueness of solutions to the generalized {R}iemann problem for isentropic flow, SIAM J. Appl. Math., 75 (2015), 679-702.  doi: 10.1137/140962759.

[35]

G. A. ReigstadT. FlåttenN. Erland Haugen and T. Ytrehus, Coupling constants and the generalized Riemann problem for isothermal junction flow, J. Hyperbolic Differ. Equ., 12 (2015), 37-59.  doi: 10.1142/S0219891615500022.

Figure 1.  Intersection of three pipes at junction O. Right-Zoomed view of the junction with old traces $ U_{{i}}^{{o}} $ and new traces $ U_{{i}}^{{*}} $ given in Section 2
Figure 2.  Phase plot in terms of equilibrium variables with initial state $ V_i^o = (0.1, 0.4)^T $
Figure 3.  Momentum for perturbation of order $ 10^{-3} $ for a node connected to two pipes
Figure 4.  Momentum for perturbation of order $ 10^{-6} $ for a node connected to two pipes
Figure 5.  Momentum for perturbation of order $ 10^{-3} $ for a node connected to one incoming and two outgoing pipes
Figure 6.  Momentum for perturbation of order $ 10^{-6} $ for a node connected to one incoming and two outgoing pipes
Figure 7.  Conservative variables, $ \rho, q $ at T = 0.1 in pipes 1, 2, 3 with WB and NWB scheme
Figure 8.  Conservative variables, $ \rho, q $ at T = 0.25 in pipes 1, 2, 3 with WB and NWB scheme
Table 1.  Comparison of L-1 errors between well-balanced(WB) and non well-balanced(NWB) scheme at steady state for a junction at time T = 1
No. of cells in each pipe L1-error for variable 1 Incoming, 1 Outgoing 1 Incoming, 2 Outgoing 2 Incoming, 1 Outgoing
WBNWBWBNWBWBNWB
50K$2.83\text{x}10^{-17}$$6.19\text{x}10^{-7}$ $6.91\text{x}10^{-17}$$3.78\text{x}10^{-7}$ $9.02\text{x}10^{-17}$$3.45\text{x}10^{-7}$
L$3.44\text{x}10^{-17}$$9.48\text{x}10^{-7}$$5.16\text{x}10^{-17}$$3.57\text{x}10^{-7}$$9.21\text{x}10^{-17}$$7.38\text{x}10^{-7}$
100K$3.95\text{x}10^{-17}$$1.56\text{x}10^{-7}$$8.12\text{x}10^{-17}$$9.63\text{x}10^{-8}$$8.60\text{x}10^{-17}$$8.67\text{x}10^{-8}$
L$4.86\text{x}10^{-17}$$2.43\text{x}10^{-7}$$7.38\text{x}10^{-17}$$8.94\text{x}10^{-8}$$8.24\text{x}10^{-17}$$1.87\text{x}10^{-7}$
200K$5.11\text{x}10^{-17}$$3.88\text{x}10^{-8}$ $8.69\text{x}10^{-17}$$2.62\text{x}10^{-8}$ $1.04\text{x}10^{-16}$$2.69\text{x}10^{-8}$
L$5.85\text{x}10^{-17}$$6.13\text{x}10^{-8}$$7.06\text{x}10^{-17}$$2.32\text{x}10^{-8}$$9.49\text{x}10^{-17}$$5.03\text{x}10^{-8}$
No. of cells in each pipe L1-error for variable 1 Incoming, 1 Outgoing 1 Incoming, 2 Outgoing 2 Incoming, 1 Outgoing
WBNWBWBNWBWBNWB
50K$2.83\text{x}10^{-17}$$6.19\text{x}10^{-7}$ $6.91\text{x}10^{-17}$$3.78\text{x}10^{-7}$ $9.02\text{x}10^{-17}$$3.45\text{x}10^{-7}$
L$3.44\text{x}10^{-17}$$9.48\text{x}10^{-7}$$5.16\text{x}10^{-17}$$3.57\text{x}10^{-7}$$9.21\text{x}10^{-17}$$7.38\text{x}10^{-7}$
100K$3.95\text{x}10^{-17}$$1.56\text{x}10^{-7}$$8.12\text{x}10^{-17}$$9.63\text{x}10^{-8}$$8.60\text{x}10^{-17}$$8.67\text{x}10^{-8}$
L$4.86\text{x}10^{-17}$$2.43\text{x}10^{-7}$$7.38\text{x}10^{-17}$$8.94\text{x}10^{-8}$$8.24\text{x}10^{-17}$$1.87\text{x}10^{-7}$
200K$5.11\text{x}10^{-17}$$3.88\text{x}10^{-8}$ $8.69\text{x}10^{-17}$$2.62\text{x}10^{-8}$ $1.04\text{x}10^{-16}$$2.69\text{x}10^{-8}$
L$5.85\text{x}10^{-17}$$6.13\text{x}10^{-8}$$7.06\text{x}10^{-17}$$2.32\text{x}10^{-8}$$9.49\text{x}10^{-17}$$5.03\text{x}10^{-8}$
Table 2.  Comparison of L-1 errors between well-balanced(WB) and non well-balanced(NWB) scheme at steady state with a compressor at different compression ratios at time T = 1
No. of cells in each pipe L1-error for variable CR=1.5 CR=2.0 CR=2.5
WB NWB WB NWB WB NWB
50 K $1.11\text{x}10^{-17}$ $4.16\text{x}10^{-7}$ $5.30\text{x}10^{-17}$ $3.78\text{x}10^{-7}$ $1.97\text{x}10^{-17}$ $3.77\text{x}10^{-7}$
L $2.66\text{x}10^{-17}$ $4.00\text{x}10^{-7}$ $5.38\text{x}10^{-17}$ $3.57\text{x}10^{-7}$ $1.39\text{x}10^{-17}$ $3.54\text{x}10^{-7}$
100 K $2.90\text{x}10^{-17}$ $1.05\text{x}10^{-7}$ $7.28\text{x}10^{-17}$ $9.63\text{x}10^{-8}$ $4.22\text{x}10^{-17}$ $9.68\text{x}10^{-8}$
L $4.08\text{x}10^{-17}$ $1.01\text{x}10^{-7}$ $7.24\text{x}10^{-17}$ $8.94\text{x}10^{-8}$ $4.66\text{x}10^{-17}$ $8.89\text{x}10^{-7}$
200 K $4.26\text{x}10^{-17}$ $2.64\text{x}10^{-8}$ $8.15\text{x}10^{-17}$ $2.62\text{x}10^{-8}$ $5.02\text{x}10^{-17}$ $2.84\text{x}10^{-8}$
L $4.69\text{x}10^{-17}$ $2.53\text{x}10^{-8}$ $7.45\text{x}10^{-17}$ $2.32\text{x}10^{-8}$ $5.76\text{x}10^{-17}$ $2.59\text{x}10^{-8}$
No. of cells in each pipe L1-error for variable CR=1.5 CR=2.0 CR=2.5
WB NWB WB NWB WB NWB
50 K $1.11\text{x}10^{-17}$ $4.16\text{x}10^{-7}$ $5.30\text{x}10^{-17}$ $3.78\text{x}10^{-7}$ $1.97\text{x}10^{-17}$ $3.77\text{x}10^{-7}$
L $2.66\text{x}10^{-17}$ $4.00\text{x}10^{-7}$ $5.38\text{x}10^{-17}$ $3.57\text{x}10^{-7}$ $1.39\text{x}10^{-17}$ $3.54\text{x}10^{-7}$
100 K $2.90\text{x}10^{-17}$ $1.05\text{x}10^{-7}$ $7.28\text{x}10^{-17}$ $9.63\text{x}10^{-8}$ $4.22\text{x}10^{-17}$ $9.68\text{x}10^{-8}$
L $4.08\text{x}10^{-17}$ $1.01\text{x}10^{-7}$ $7.24\text{x}10^{-17}$ $8.94\text{x}10^{-8}$ $4.66\text{x}10^{-17}$ $8.89\text{x}10^{-7}$
200 K $4.26\text{x}10^{-17}$ $2.64\text{x}10^{-8}$ $8.15\text{x}10^{-17}$ $2.62\text{x}10^{-8}$ $5.02\text{x}10^{-17}$ $2.84\text{x}10^{-8}$
L $4.69\text{x}10^{-17}$ $2.53\text{x}10^{-8}$ $7.45\text{x}10^{-17}$ $2.32\text{x}10^{-8}$ $5.76\text{x}10^{-17}$ $2.59\text{x}10^{-8}$
[1]

Boris Andreianov, Nicolas Seguin. Analysis of a Burgers equation with singular resonant source term and convergence of well-balanced schemes. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 1939-1964. doi: 10.3934/dcds.2012.32.1939

[2]

Laurent Gosse. Well-balanced schemes using elementary solutions for linear models of the Boltzmann equation in one space dimension. Kinetic and Related Models, 2012, 5 (2) : 283-323. doi: 10.3934/krm.2012.5.283

[3]

Constantine M. Dafermos. Hyperbolic balance laws with relaxation. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4271-4285. doi: 10.3934/dcds.2016.36.4271

[4]

Rinaldo M. Colombo, Graziano Guerra. Hyperbolic balance laws with a dissipative non local source. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1077-1090. doi: 10.3934/cpaa.2008.7.1077

[5]

François Bouchut, Vladimir Zeitlin. A robust well-balanced scheme for multi-layer shallow water equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (4) : 739-758. doi: 10.3934/dcdsb.2010.13.739

[6]

Yanni Zeng. LP decay for general hyperbolic-parabolic systems of balance laws. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 363-396. doi: 10.3934/dcds.2018018

[7]

Stephan Gerster, Michael Herty. Discretized feedback control for systems of linearized hyperbolic balance laws. Mathematical Control and Related Fields, 2019, 9 (3) : 517-539. doi: 10.3934/mcrf.2019024

[8]

Kenta Nakamura, Tohru Nakamura, Shuichi Kawashima. Asymptotic stability of rarefaction waves for a hyperbolic system of balance laws. Kinetic and Related Models, 2019, 12 (4) : 923-944. doi: 10.3934/krm.2019035

[9]

Shucheng Yu. Logarithm laws for unipotent flows on hyperbolic manifolds. Journal of Modern Dynamics, 2017, 11: 447-476. doi: 10.3934/jmd.2017018

[10]

Elena Rossi. Well-posedness of general 1D initial boundary value problems for scalar balance laws. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3577-3608. doi: 10.3934/dcds.2019147

[11]

Markus Musch, Ulrik Skre Fjordholm, Nils Henrik Risebro. Well-posedness theory for nonlinear scalar conservation laws on networks. Networks and Heterogeneous Media, 2022, 17 (1) : 101-128. doi: 10.3934/nhm.2021025

[12]

Graziano Crasta, Benedetto Piccoli. Viscosity solutions and uniqueness for systems of inhomogeneous balance laws. Discrete and Continuous Dynamical Systems, 1997, 3 (4) : 477-502. doi: 10.3934/dcds.1997.3.477

[13]

Laura Caravenna. Regularity estimates for continuous solutions of α-convex balance laws. Communications on Pure and Applied Analysis, 2017, 16 (2) : 629-644. doi: 10.3934/cpaa.2017031

[14]

Mauro Garavello. A review of conservation laws on networks. Networks and Heterogeneous Media, 2010, 5 (3) : 565-581. doi: 10.3934/nhm.2010.5.565

[15]

Jayadev S. Athreya, Gregory A. Margulis. Logarithm laws for unipotent flows, Ⅱ. Journal of Modern Dynamics, 2017, 11: 1-16. doi: 10.3934/jmd.2017001

[16]

Piotr Gwiazda, Piotr Orlinski, Agnieszka Ulikowska. Finite range method of approximation for balance laws in measure spaces. Kinetic and Related Models, 2017, 10 (3) : 669-688. doi: 10.3934/krm.2017027

[17]

Jayadev S. Athreya, Gregory A. Margulis. Logarithm laws for unipotent flows, I. Journal of Modern Dynamics, 2009, 3 (3) : 359-378. doi: 10.3934/jmd.2009.3.359

[18]

Tai-Ping Liu, Shih-Hsien Yu. Hyperbolic conservation laws and dynamic systems. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 143-145. doi: 10.3934/dcds.2000.6.143

[19]

Klaus-Jochen Engel, Marjeta Kramar Fijavž, Rainer Nagel, Eszter Sikolya. Vertex control of flows in networks. Networks and Heterogeneous Media, 2008, 3 (4) : 709-722. doi: 10.3934/nhm.2008.3.709

[20]

Georges Bastin, B. Haut, Jean-Michel Coron, Brigitte d'Andréa-Novel. Lyapunov stability analysis of networks of scalar conservation laws. Networks and Heterogeneous Media, 2007, 2 (4) : 751-759. doi: 10.3934/nhm.2007.2.751

2021 Impact Factor: 1.41

Metrics

  • PDF downloads (310)
  • HTML views (179)
  • Cited by (0)

Other articles
by authors

[Back to Top]