December  2019, 14(4): 677-707. doi: 10.3934/nhm.2019027

A local sensitivity and regularity analysis for the Vlasov-Poisson-Fokker-Planck system with multi-dimensional uncertainty and the spectral convergence of the stochastic Galerkin method

Department of Mathematics, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA

* Corresponding author: Yuhua Zhu

Received  August 2018 Revised  April 2019 Published  October 2019

Fund Project: The author was supported in part by Prof. Shi Jin's NSF grants DMS-1522184 and DMS1107291: RNMS KI-Net

We study the Vlasov-Poisson-Fokker-Planck (VPFP) system with uncertainty and multiple scales. Here the uncertainty, modeled by multi-dimensional random variables, enters the system through the initial data, while the multiple scales lead the system to its high-field or parabolic regimes. We obtain a sharp decay rate of the solution to the global Maxwellian, which reveals that the VPFP system is decreasingly sensitive to the initial perturbation as the Knudsen number goes to zero. The sharp regularity estimates in terms of the Knudsen number lead to the stability of the generalized Polynomial Chaos stochastic Galerkin (gPC-SG) method. Based on the smoothness of the solution in the random space and the stability of the numerical method, we conclude the gPC-SG method has spectral accuracy uniform in the Knudsen number.

Citation: Yuhua Zhu. A local sensitivity and regularity analysis for the Vlasov-Poisson-Fokker-Planck system with multi-dimensional uncertainty and the spectral convergence of the stochastic Galerkin method. Networks & Heterogeneous Media, 2019, 14 (4) : 677-707. doi: 10.3934/nhm.2019027
References:
[1]

A. ArnoldJ. A. CarrilloI. Gamba and C.-W. Shu, Low and high field scaling limits for the Vlasov- and Wigner-Poisson-Fokker-Planck systems, Transport Theory and Statistical Physics, 30 (2001), 121-153.  doi: 10.1081/TT-100105365.  Google Scholar

[2]

I. BabuskaR. Tempone and G. E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM Journal on Numerical Analysis, 42 (2004), 800-825.  doi: 10.1137/S0036142902418680.  Google Scholar

[3]

F. Bouchut, F. Golse and M. Pulvirenti, Kinetic Equations and Asymptotic Theory, Series in Applied Mathematics (Paris), 4. Gauthier-Villars, Éditions Scientifiques et Médicales Elsevier, Paris, 2000.  Google Scholar

[4]

S. Chandrasekhar, Stochastic probems in physics and astronomy, Reviews of Modern Physics, 15 (1943), 1-89.   Google Scholar

[5]

A. CohenR. DeVore and C. Schwab, Convergence rates of best $N$-term galerkin approximations for a class of elliptic sPDEs, Foundations of Computational Mathematics, 10 (2010), 615-646.  doi: 10.1007/s10208-010-9072-2.  Google Scholar

[6]

A. CohenR. DeVore and C. Schwab, Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE's, Analysis and Applications, 9 (2011), 11-47.  doi: 10.1142/S0219530511001728.  Google Scholar

[7]

R. J. DuanM. Fornasier and G. Toscani, A kinetic flocking model with diffusion, Communications in Mathematical Physics, 300 (2010), 95-145.  doi: 10.1007/s00220-010-1110-z.  Google Scholar

[8]

T. GoudonJ. NietoF. Poupaud and J. Soler, Multidimensional high-field limit of the electrostatic Vlasov-Poisson-Fokker-Planck system, Journal of Differential Equations, 213 (2005), 418-442.  doi: 10.1016/j.jde.2004.09.008.  Google Scholar

[9]

J. W. Hu and S. Jin, A stochastic Galerkin method for the Boltzmann equation with uncertainty, Journal of Computational Physics, 315 (2016), 150-168.  doi: 10.1016/j.jcp.2016.03.047.  Google Scholar

[10]

J. W. Hu and S. Jin, Uncertainty quantification for kinetic equations, Uncertainty Quantification for Kinetic and Hyperbolic Equations, SEMA SIMAI Springer Ser., Springer, Cham, 14 (2017), 193-229.  doi: 10.1007/978-3-319-67110-9_6.  Google Scholar

[11]

H. Ju Hwang and J. H. Jang, On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian, Discrete & Continuous Dynamical Systems-Series B, 18 (2013), 681-691.  doi: 10.3934/dcdsb.2013.18.681.  Google Scholar

[12]

S. Jin, Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: A review, Riv. Math. Univ. Parma (N.S.), 2 (2012), 177-216.   Google Scholar

[13]

S. Jin, J.-G. Liu and Z. Ma, Uniform spectral convergence of the stochastic Galerkin method for the linear transport equations with random inputs in diffusive regime and a micro-macro decomposition based asymptotic-preserving method, Research in the Mathematical Sciences, 4 (2017), 25 pp. doi: 10.1186/s40687-017-0105-1.  Google Scholar

[14]

S. JinD. B. Xiu and X. Y. Zhu, Asymptotic-preserving methods for hyperbolic and transport equations with random inputs and diffusive scalings, Journal of Computational Physics, 289 (2015), 35-52.  doi: 10.1016/j.jcp.2015.02.023.  Google Scholar

[15]

S. Jin and Y. H. Zhu, Hypocoercivity and uniform regularity for the Vlasov-Poisson-Fokker-Planck system with uncertainty and multiple scales, SIAM Journal on Mathematical Analysis, 50 (2018), 1790-1816.  doi: 10.1137/17M1123845.  Google Scholar

[16]

Q. Li and L. Wang, Uniform regularity for linear kinetic equations with random input based on hypocoercivity, SIAM/ASA J. Uncertainty Quantification, 5 (2017), 1193-1219.  doi: 10.1137/16M1106675.  Google Scholar

[17]

L. Liu and S. Jin, Hypocoercivity based sensitivity analysis and spectral convergence of the stochastic Galerkin approximation to collisional kinetic equations with multiple scales and random inputs, SIAM Multiscale Modeling and Simulation, 16 (2018), 1085-1114.  doi: 10.1137/17M1151730.  Google Scholar

[18]

J. NietoF. Poupaud and J. Soler, High-field limit for the Vlasov-Poisson-Fokker-Planck system, Archive for Rational Mechanics and Analysis, 158 (2001), 29-59.  doi: 10.1007/s002050100139.  Google Scholar

[19]

R. W. Shu and S. Jin, Uniform regularity in the random space and spectral accuracy of the stochastic galerkin method for a kinetic-fluid two-phase flow model with random initial inputs in the light particle regime, Mathematical Modelling and Numerical Analysis, 52 (2018), 1651-1678.  doi: 10.1051/m2an/2018024.  Google Scholar

[20]

J. Soler, Asymptotic behaviour for the Vlasov-Poisson-Fokker-Planck system, Nonlinear Analysis: Theory, Methods & Applications, 30 (1997), 5217-5228.  doi: 10.1016/S0362-546X(97)00239-3.  Google Scholar

[21]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J., 1970.  Google Scholar

[22]

Y. H. Zhu, Sensitivity analysis and uniform regularity for the Boltzmann equation with uncertainty and its stochastic Galerkin approximation, Preprint. Google Scholar

show all references

References:
[1]

A. ArnoldJ. A. CarrilloI. Gamba and C.-W. Shu, Low and high field scaling limits for the Vlasov- and Wigner-Poisson-Fokker-Planck systems, Transport Theory and Statistical Physics, 30 (2001), 121-153.  doi: 10.1081/TT-100105365.  Google Scholar

[2]

I. BabuskaR. Tempone and G. E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM Journal on Numerical Analysis, 42 (2004), 800-825.  doi: 10.1137/S0036142902418680.  Google Scholar

[3]

F. Bouchut, F. Golse and M. Pulvirenti, Kinetic Equations and Asymptotic Theory, Series in Applied Mathematics (Paris), 4. Gauthier-Villars, Éditions Scientifiques et Médicales Elsevier, Paris, 2000.  Google Scholar

[4]

S. Chandrasekhar, Stochastic probems in physics and astronomy, Reviews of Modern Physics, 15 (1943), 1-89.   Google Scholar

[5]

A. CohenR. DeVore and C. Schwab, Convergence rates of best $N$-term galerkin approximations for a class of elliptic sPDEs, Foundations of Computational Mathematics, 10 (2010), 615-646.  doi: 10.1007/s10208-010-9072-2.  Google Scholar

[6]

A. CohenR. DeVore and C. Schwab, Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE's, Analysis and Applications, 9 (2011), 11-47.  doi: 10.1142/S0219530511001728.  Google Scholar

[7]

R. J. DuanM. Fornasier and G. Toscani, A kinetic flocking model with diffusion, Communications in Mathematical Physics, 300 (2010), 95-145.  doi: 10.1007/s00220-010-1110-z.  Google Scholar

[8]

T. GoudonJ. NietoF. Poupaud and J. Soler, Multidimensional high-field limit of the electrostatic Vlasov-Poisson-Fokker-Planck system, Journal of Differential Equations, 213 (2005), 418-442.  doi: 10.1016/j.jde.2004.09.008.  Google Scholar

[9]

J. W. Hu and S. Jin, A stochastic Galerkin method for the Boltzmann equation with uncertainty, Journal of Computational Physics, 315 (2016), 150-168.  doi: 10.1016/j.jcp.2016.03.047.  Google Scholar

[10]

J. W. Hu and S. Jin, Uncertainty quantification for kinetic equations, Uncertainty Quantification for Kinetic and Hyperbolic Equations, SEMA SIMAI Springer Ser., Springer, Cham, 14 (2017), 193-229.  doi: 10.1007/978-3-319-67110-9_6.  Google Scholar

[11]

H. Ju Hwang and J. H. Jang, On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian, Discrete & Continuous Dynamical Systems-Series B, 18 (2013), 681-691.  doi: 10.3934/dcdsb.2013.18.681.  Google Scholar

[12]

S. Jin, Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: A review, Riv. Math. Univ. Parma (N.S.), 2 (2012), 177-216.   Google Scholar

[13]

S. Jin, J.-G. Liu and Z. Ma, Uniform spectral convergence of the stochastic Galerkin method for the linear transport equations with random inputs in diffusive regime and a micro-macro decomposition based asymptotic-preserving method, Research in the Mathematical Sciences, 4 (2017), 25 pp. doi: 10.1186/s40687-017-0105-1.  Google Scholar

[14]

S. JinD. B. Xiu and X. Y. Zhu, Asymptotic-preserving methods for hyperbolic and transport equations with random inputs and diffusive scalings, Journal of Computational Physics, 289 (2015), 35-52.  doi: 10.1016/j.jcp.2015.02.023.  Google Scholar

[15]

S. Jin and Y. H. Zhu, Hypocoercivity and uniform regularity for the Vlasov-Poisson-Fokker-Planck system with uncertainty and multiple scales, SIAM Journal on Mathematical Analysis, 50 (2018), 1790-1816.  doi: 10.1137/17M1123845.  Google Scholar

[16]

Q. Li and L. Wang, Uniform regularity for linear kinetic equations with random input based on hypocoercivity, SIAM/ASA J. Uncertainty Quantification, 5 (2017), 1193-1219.  doi: 10.1137/16M1106675.  Google Scholar

[17]

L. Liu and S. Jin, Hypocoercivity based sensitivity analysis and spectral convergence of the stochastic Galerkin approximation to collisional kinetic equations with multiple scales and random inputs, SIAM Multiscale Modeling and Simulation, 16 (2018), 1085-1114.  doi: 10.1137/17M1151730.  Google Scholar

[18]

J. NietoF. Poupaud and J. Soler, High-field limit for the Vlasov-Poisson-Fokker-Planck system, Archive for Rational Mechanics and Analysis, 158 (2001), 29-59.  doi: 10.1007/s002050100139.  Google Scholar

[19]

R. W. Shu and S. Jin, Uniform regularity in the random space and spectral accuracy of the stochastic galerkin method for a kinetic-fluid two-phase flow model with random initial inputs in the light particle regime, Mathematical Modelling and Numerical Analysis, 52 (2018), 1651-1678.  doi: 10.1051/m2an/2018024.  Google Scholar

[20]

J. Soler, Asymptotic behaviour for the Vlasov-Poisson-Fokker-Planck system, Nonlinear Analysis: Theory, Methods & Applications, 30 (1997), 5217-5228.  doi: 10.1016/S0362-546X(97)00239-3.  Google Scholar

[21]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J., 1970.  Google Scholar

[22]

Y. H. Zhu, Sensitivity analysis and uniform regularity for the Boltzmann equation with uncertainty and its stochastic Galerkin approximation, Preprint. Google Scholar

[1]

Liu Liu. Uniform spectral convergence of the stochastic Galerkin method for the linear semiconductor Boltzmann equation with random inputs and diffusive scaling. Kinetic & Related Models, 2018, 11 (5) : 1139-1156. doi: 10.3934/krm.2018044

[2]

Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017

[3]

Blanca Ayuso, José A. Carrillo, Chi-Wang Shu. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinetic & Related Models, 2011, 4 (4) : 955-989. doi: 10.3934/krm.2011.4.955

[4]

Hyung Ju Hwang, Juhi Jang. On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 681-691. doi: 10.3934/dcdsb.2013.18.681

[5]

Ling Hsiao, Fucai Li, Shu Wang. Combined quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system. Communications on Pure & Applied Analysis, 2008, 7 (3) : 579-589. doi: 10.3934/cpaa.2008.7.579

[6]

Lan Luo, Hongjun Yu. Global solutions to the relativistic Vlasov-Poisson-Fokker-Planck system. Kinetic & Related Models, 2016, 9 (2) : 393-405. doi: 10.3934/krm.2016.9.393

[7]

Kosuke Ono, Walter A. Strauss. Regular solutions of the Vlasov-Poisson-Fokker-Planck system. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 751-772. doi: 10.3934/dcds.2000.6.751

[8]

Karl Kunisch, Markus Müller. Uniform convergence of the POD method and applications to optimal control. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4477-4501. doi: 10.3934/dcds.2015.35.4477

[9]

Maxime Hauray, Samir Salem. Propagation of chaos for the Vlasov-Poisson-Fokker-Planck system in 1D. Kinetic & Related Models, 2019, 12 (2) : 269-302. doi: 10.3934/krm.2019012

[10]

Shui-Nee Chow, Wuchen Li, Haomin Zhou. Entropy dissipation of Fokker-Planck equations on graphs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4929-4950. doi: 10.3934/dcds.2018215

[11]

Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model Fokker-Planck equation. Kinetic & Related Models, 2012, 5 (3) : 485-503. doi: 10.3934/krm.2012.5.485

[12]

Marco Torregrossa, Giuseppe Toscani. On a Fokker-Planck equation for wealth distribution. Kinetic & Related Models, 2018, 11 (2) : 337-355. doi: 10.3934/krm.2018016

[13]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[14]

Michael Herty, Lorenzo Pareschi. Fokker-Planck asymptotics for traffic flow models. Kinetic & Related Models, 2010, 3 (1) : 165-179. doi: 10.3934/krm.2010.3.165

[15]

Katherine Zhiyuan Zhang. Focusing solutions of the Vlasov-Poisson system. Kinetic & Related Models, 2019, 12 (6) : 1313-1327. doi: 10.3934/krm.2019051

[16]

Shi Jin, Yingda Li. Local sensitivity analysis and spectral convergence of the stochastic Galerkin method for discrete-velocity Boltzmann equations with multi-scales and random inputs. Kinetic & Related Models, 2019, 12 (5) : 969-993. doi: 10.3934/krm.2019037

[17]

Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic & Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056

[18]

Andreas Denner, Oliver Junge, Daniel Matthes. Computing coherent sets using the Fokker-Planck equation. Journal of Computational Dynamics, 2016, 3 (2) : 163-177. doi: 10.3934/jcd.2016008

[19]

Roberta Bosi. Classical limit for linear and nonlinear quantum Fokker-Planck systems. Communications on Pure & Applied Analysis, 2009, 8 (3) : 845-870. doi: 10.3934/cpaa.2009.8.845

[20]

Ioannis Markou. Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks & Heterogeneous Media, 2017, 12 (4) : 683-705. doi: 10.3934/nhm.2017028

2018 Impact Factor: 0.871

Article outline

[Back to Top]