December  2019, 14(4): 733-757. doi: 10.3934/nhm.2019029

Asymptotic structure of the spectrum in a Dirichlet-strip with double periodic perforations

1. 

Saint-Petersburg State University, Universitetskaya nab. 7–9, St. Petersburg, 199034, Russia

2. 

Institute of Problems of Mechanical Engineering RAS, V.O., Bolshoj pr., 61, St. Petersburg, 199178, Russia

3. 

Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM, Nicolás Cabrera 13-15, Campus de Cantoblanco-UAM, Madrid, 28049, Spain

4. 

Departamento de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Madrid, Spain

5. 

Departamento de Matemática Aplicada y Ciencias de la Computación, Universidad de Cantabria, Avenida de las Castros s/n, 39005 Santander, Spain

* Corresponding author: María-Eugenia Pérez-Martínez

Received  October 2018 Revised  May 2019 Published  October 2019

Fund Project: The first author is supported by Russian Foundation on Basic Research, grant 18-01-00325.
The second author is supported by the Spanish MINECO through the "Severo Ochoa Programme for Centres of Excellence in RaD" (SEV-2015-0554) and MTM2017-89976-P.
The third author is supported by the Spanish MINECO grant MTM2013- 44883-P and MICINN grant PGC2018-098178-B-I00.

We address a spectral problem for the Dirichlet-Laplace operator in a waveguide $ \Pi^ \varepsilon $. $ \Pi^ \varepsilon$ is obtained from repsilon an unbounded two-dimensional strip $ \Pi $ which is periodically perforated by a family of holes, which are also periodically distributed along a line, the so-called "perforation string". We assume that the two periods are different, namely, $ O(1) $ and $ O( \varepsilon) $ respectively, where $ 0< \varepsilon\ll 1 $. We look at the band-gap structure of the spectrum $ \sigma^ \varepsilon $ as $ \varepsilon\to 0 $. We derive asymptotic formulas for the endpoints of the spectral bands and show that $ \sigma^ \varepsilon $ has a large number of short bands of length $ O( \varepsilon) $ which alternate with wide gaps of width $ O(1) $.

Citation: Sergei A. Nazarov, Rafael Orive-Illera, María-Eugenia Pérez-Martínez. Asymptotic structure of the spectrum in a Dirichlet-strip with double periodic perforations. Networks & Heterogeneous Media, 2019, 14 (4) : 733-757. doi: 10.3934/nhm.2019029
References:
[1]

M. S. Birman and M. Z. Solomjak, Spectral Theory of Selfadjoint Operators in Hilbert Spaces, Mathematics and its Applications (Soviet Series). D. Reidel Publishing Co., Dordrecht, 1987.  Google Scholar

[2]

D. I. Borisov and K. V. Pankrashkin, Gap opening and split band edges in waveguides coupled by a periodic system of small windows, Math. Notes, 93 (2013), 660-675.  doi: 10.1134/S0001434613050039.  Google Scholar

[3]

D. I. Borisov and K. V. Pankrashkin, Quantum waveguides with small periodic perturbations: Gaps and edges of Brillouin zones, Journal of Physics A: Mathematical and Theoretical, 46 (2013), 235203, 18 pp. doi: 10.1088/1751-8113/46/23/235203.  Google Scholar

[4]

C. Conca, J. Planchard and M. Vanninathan, Fluids and Periodic Structures, RAM: Research in Applied Mathematics, 38. John Wiley & Sons, Ltd., Chichester, Masson, Paris, 1995.  Google Scholar

[5]

D. Cioranescu and F. Murat, A strange term coming from nowhere, Topics in the Mathematical Modelling of Composite Materials, Progr. Nonlinear Differential Equations Appl., Birkhäuser, Boston, 31 (1997), 45-93.   Google Scholar

[6]

I. M. Gelfand, Expansion in characteristic functions of an equation with periodic coefficients, Doklady Akad. Nauk SSSR(N.S.), 73 (1950), 1117-1120.   Google Scholar

[7]

A. M. Il'in, A boundary value problem for the elliptic equation of second order in a domain with a narrow slit. 1. The two-dimensional case, Math. USSR-Sb., 28 (1976), 459-480.  doi: 10.1070/SM1976v028n04ABEH001663.  Google Scholar

[8]

A. M. Il'in, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, Translations of Mathematical Monographs, 102. American Mathematical Society, Providence, RI, 1992.  Google Scholar

[9]

T. Kato, Perturbation Theory for Linear Operators, Die Grundlehren der mathematischen Wissenschaften, Band 132 Springer-Verlag New York, Inc., New York, 1966.  Google Scholar

[10]

V. A. Kondrat'yev, Boundary value problems for elliptic equations in domains with conical or angular points, Trudy Moskov. Mat. Obshch., 16 (1967), 209-292.   Google Scholar

[11]

P. Kuchment, Floquet Theory for Partial Differential Equations, Operator Theory: Advances and Applications, 60. Birkhäuser Verlag, Basel, 1993. doi: 10.1007/978-3-0348-8573-7.  Google Scholar

[12]

N. S. Landkof, Foundations of Modern Potential Theory, Die Grundlehren der Mathematischen Wissenschaften, Band 180. Springer-Verlag, New York-Heidelberg, 1972.  Google Scholar

[13]

D. Leguillon and E. Sánchez-Palencia, Computations of Singular Solutions in Elliptic Problems and Elasticity, John Wiley & Sons, Ltd., Chichester, Masson, Paris, 1987.  Google Scholar

[14]

M. Lobo, O. A. Oleinik, E. Perez and T. A. Shaposhnikova, On homogenization of solutions of boundary value problems in domains, perforated along manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25 (1998), 611–629.  Google Scholar

[15]

M. Lobo and E. Pérez, On the local vibrations for systems with many concentrated masses near the boundary, C.R. Acad. Sci. Paris, Ser. IIb, 324 (1997), 323-329. doi: 10.1016/S1251-8069(99)80041-4.  Google Scholar

[16]

V. A. Marchenko and E. Y. Khruslov, Homogenization of Partial Differential Equations, Progress in Mathematical Physics, 46. Birkhäuser Boston, Inc., Boston, MA, 2006.  Google Scholar

[17]

V. Maz'ya, S. Nazarov and B. Plamenevskij, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, Vol. I, Operator Theory: Advances and Applications, 111. Birkhäuser Verlag, Basel, 2000.  Google Scholar

[18]

G. Nguetseng, Problème d'écrans perforés pour l'équation de Laplace, RAIRO. Modél. Math. Anal. Numér., 19 (1985), 33-63.  doi: 10.1051/m2an/1985190100331.  Google Scholar

[19]

S. A. Nazarov, Asymptotic conditions at a point, self-adjoint extensions of operators and the method of matched asymptotic expansions, Proceedings of the St. Petersburg Mathematical Society, Vol. V, Amer. Math. Soc. Transl. Ser. 2, Amer. Math. Soc., Providence, RI, 193 (1999), 77-125.  doi: 10.1090/trans2/193/05.  Google Scholar

[20]

S. A. Nazarov, The polynomial property of self-adjoint elliptic boundary-value problems and the algebraic description of their attributes, Russ. Math. Surveys, 54 (1999), 947-1014.  doi: 10.1070/rm1999v054n05ABEH000204.  Google Scholar

[21]

S. A. Nazarov, Opening of a gap in the continuous spectrum of a periodically perturbed waveguide, Mathematical Notes, 87 (2010), 738-756.  doi: 10.1134/S0001434610050123.  Google Scholar

[22]

S. A. Nazarov, Asymptotic behavior of spectral gaps in a regularly perturbed periodic waveguide, Vestnik St. Petersburg Univ. Mathematics, 46 (2013), 89-97.  doi: 10.3103/S1063454113020052.  Google Scholar

[23]

S. A. Nazarov, R. Orive-Illera and M.-E. Pérez-Martínez, On the polarization matrix for a perforated strip, in Integral Methods in Science and Engineering: Analytic Treatment and Numerical Approximations, Birkhauser, N.Y., (2019), 267–281. doi: 10.1007/978-3-030-16077-7_21.  Google Scholar

[24]

S. A. Nazarov and E. Pérez, New asymptotic effects for the spectrum of problems on concentrated masses near the boundary, Comptes Rendues de Mécanique, 337 (2009), 585-590.  doi: 10.1016/j.crme.2009.07.002.  Google Scholar

[25]

S. A. Nazarov and M. E. Pérez, On multi-scale asymptotic structure of eigenfunctions in a boundary value problem with concentrated masses near the boundary, Rev. Mat. Complut., 31 (2018), 1-62.  doi: 10.1007/s13163-017-0243-4.  Google Scholar

[26]

S. A. Nazarov and B. A. Plamenevskii, Elliptic Problems in Domains with Piecewise Smooth Boundaries, De Gruyter Expositions in Mathematics, 13. Walter de Gruyter & Co., Berlin, 1994. doi: 10.1515/9783110848915.525.  Google Scholar

[27]

O. A. Oleinik, A. S. Shamaev and G. A. Yosifia, Mathematical Problems in Elasticity and Homogenization, Studies in Mathematics and its Applications, 26. North-Holland Publishing Co., Amsterdam, 1992.  Google Scholar

[28]

G. P. Panasenko, Higher order asymptotics of solutions of problems on the contact of periodic structures, Mat. Sb. (N.S.), 110(152) (1979), 505-538.   Google Scholar

[29]

G. Polya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, no. 27, Princeton University Press, Princeton, N. J., 1951.  Google Scholar

[30] M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press, New York-London, 1978.   Google Scholar
[31]

J. Sanchez-Hubert and E. Sánchez-Palencia, Vibration and Coupling of Continuous Systems. Asymptotic Methods, Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-642-73782-4.  Google Scholar

[32]

E. Sanchez-Palencia, Un problème d'ecoulement lent d'un fluide incompressible au travers d'une paroi finement perforée, Homogenization Methods: Theory and Applications in Physics, Collect. Dir. Études Rech. Élec. France, Eyrolles, Paris, 57 (1985), 371-400.   Google Scholar

[33]

M. M. Skriganov, Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators, Trudy Mat. Inst. Steklov., 171 (1985), 122 pp.  Google Scholar

[34]

K. Yoshitomi, Band spectrum of the Laplacian on a slab with the Dirichlet boundary condition on a grid, Kyushu J. Math., 57 (2003), 87-116.  doi: 10.2206/kyushujm.57.87.  Google Scholar

[35]

M. Van Dyke, Perturbation Methods in Fluid Mechanics, Applied Mathematics and Mechanics, Vol. 8 Academic Press, New York-London, 1964.  Google Scholar

show all references

References:
[1]

M. S. Birman and M. Z. Solomjak, Spectral Theory of Selfadjoint Operators in Hilbert Spaces, Mathematics and its Applications (Soviet Series). D. Reidel Publishing Co., Dordrecht, 1987.  Google Scholar

[2]

D. I. Borisov and K. V. Pankrashkin, Gap opening and split band edges in waveguides coupled by a periodic system of small windows, Math. Notes, 93 (2013), 660-675.  doi: 10.1134/S0001434613050039.  Google Scholar

[3]

D. I. Borisov and K. V. Pankrashkin, Quantum waveguides with small periodic perturbations: Gaps and edges of Brillouin zones, Journal of Physics A: Mathematical and Theoretical, 46 (2013), 235203, 18 pp. doi: 10.1088/1751-8113/46/23/235203.  Google Scholar

[4]

C. Conca, J. Planchard and M. Vanninathan, Fluids and Periodic Structures, RAM: Research in Applied Mathematics, 38. John Wiley & Sons, Ltd., Chichester, Masson, Paris, 1995.  Google Scholar

[5]

D. Cioranescu and F. Murat, A strange term coming from nowhere, Topics in the Mathematical Modelling of Composite Materials, Progr. Nonlinear Differential Equations Appl., Birkhäuser, Boston, 31 (1997), 45-93.   Google Scholar

[6]

I. M. Gelfand, Expansion in characteristic functions of an equation with periodic coefficients, Doklady Akad. Nauk SSSR(N.S.), 73 (1950), 1117-1120.   Google Scholar

[7]

A. M. Il'in, A boundary value problem for the elliptic equation of second order in a domain with a narrow slit. 1. The two-dimensional case, Math. USSR-Sb., 28 (1976), 459-480.  doi: 10.1070/SM1976v028n04ABEH001663.  Google Scholar

[8]

A. M. Il'in, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, Translations of Mathematical Monographs, 102. American Mathematical Society, Providence, RI, 1992.  Google Scholar

[9]

T. Kato, Perturbation Theory for Linear Operators, Die Grundlehren der mathematischen Wissenschaften, Band 132 Springer-Verlag New York, Inc., New York, 1966.  Google Scholar

[10]

V. A. Kondrat'yev, Boundary value problems for elliptic equations in domains with conical or angular points, Trudy Moskov. Mat. Obshch., 16 (1967), 209-292.   Google Scholar

[11]

P. Kuchment, Floquet Theory for Partial Differential Equations, Operator Theory: Advances and Applications, 60. Birkhäuser Verlag, Basel, 1993. doi: 10.1007/978-3-0348-8573-7.  Google Scholar

[12]

N. S. Landkof, Foundations of Modern Potential Theory, Die Grundlehren der Mathematischen Wissenschaften, Band 180. Springer-Verlag, New York-Heidelberg, 1972.  Google Scholar

[13]

D. Leguillon and E. Sánchez-Palencia, Computations of Singular Solutions in Elliptic Problems and Elasticity, John Wiley & Sons, Ltd., Chichester, Masson, Paris, 1987.  Google Scholar

[14]

M. Lobo, O. A. Oleinik, E. Perez and T. A. Shaposhnikova, On homogenization of solutions of boundary value problems in domains, perforated along manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25 (1998), 611–629.  Google Scholar

[15]

M. Lobo and E. Pérez, On the local vibrations for systems with many concentrated masses near the boundary, C.R. Acad. Sci. Paris, Ser. IIb, 324 (1997), 323-329. doi: 10.1016/S1251-8069(99)80041-4.  Google Scholar

[16]

V. A. Marchenko and E. Y. Khruslov, Homogenization of Partial Differential Equations, Progress in Mathematical Physics, 46. Birkhäuser Boston, Inc., Boston, MA, 2006.  Google Scholar

[17]

V. Maz'ya, S. Nazarov and B. Plamenevskij, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, Vol. I, Operator Theory: Advances and Applications, 111. Birkhäuser Verlag, Basel, 2000.  Google Scholar

[18]

G. Nguetseng, Problème d'écrans perforés pour l'équation de Laplace, RAIRO. Modél. Math. Anal. Numér., 19 (1985), 33-63.  doi: 10.1051/m2an/1985190100331.  Google Scholar

[19]

S. A. Nazarov, Asymptotic conditions at a point, self-adjoint extensions of operators and the method of matched asymptotic expansions, Proceedings of the St. Petersburg Mathematical Society, Vol. V, Amer. Math. Soc. Transl. Ser. 2, Amer. Math. Soc., Providence, RI, 193 (1999), 77-125.  doi: 10.1090/trans2/193/05.  Google Scholar

[20]

S. A. Nazarov, The polynomial property of self-adjoint elliptic boundary-value problems and the algebraic description of their attributes, Russ. Math. Surveys, 54 (1999), 947-1014.  doi: 10.1070/rm1999v054n05ABEH000204.  Google Scholar

[21]

S. A. Nazarov, Opening of a gap in the continuous spectrum of a periodically perturbed waveguide, Mathematical Notes, 87 (2010), 738-756.  doi: 10.1134/S0001434610050123.  Google Scholar

[22]

S. A. Nazarov, Asymptotic behavior of spectral gaps in a regularly perturbed periodic waveguide, Vestnik St. Petersburg Univ. Mathematics, 46 (2013), 89-97.  doi: 10.3103/S1063454113020052.  Google Scholar

[23]

S. A. Nazarov, R. Orive-Illera and M.-E. Pérez-Martínez, On the polarization matrix for a perforated strip, in Integral Methods in Science and Engineering: Analytic Treatment and Numerical Approximations, Birkhauser, N.Y., (2019), 267–281. doi: 10.1007/978-3-030-16077-7_21.  Google Scholar

[24]

S. A. Nazarov and E. Pérez, New asymptotic effects for the spectrum of problems on concentrated masses near the boundary, Comptes Rendues de Mécanique, 337 (2009), 585-590.  doi: 10.1016/j.crme.2009.07.002.  Google Scholar

[25]

S. A. Nazarov and M. E. Pérez, On multi-scale asymptotic structure of eigenfunctions in a boundary value problem with concentrated masses near the boundary, Rev. Mat. Complut., 31 (2018), 1-62.  doi: 10.1007/s13163-017-0243-4.  Google Scholar

[26]

S. A. Nazarov and B. A. Plamenevskii, Elliptic Problems in Domains with Piecewise Smooth Boundaries, De Gruyter Expositions in Mathematics, 13. Walter de Gruyter & Co., Berlin, 1994. doi: 10.1515/9783110848915.525.  Google Scholar

[27]

O. A. Oleinik, A. S. Shamaev and G. A. Yosifia, Mathematical Problems in Elasticity and Homogenization, Studies in Mathematics and its Applications, 26. North-Holland Publishing Co., Amsterdam, 1992.  Google Scholar

[28]

G. P. Panasenko, Higher order asymptotics of solutions of problems on the contact of periodic structures, Mat. Sb. (N.S.), 110(152) (1979), 505-538.   Google Scholar

[29]

G. Polya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, no. 27, Princeton University Press, Princeton, N. J., 1951.  Google Scholar

[30] M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press, New York-London, 1978.   Google Scholar
[31]

J. Sanchez-Hubert and E. Sánchez-Palencia, Vibration and Coupling of Continuous Systems. Asymptotic Methods, Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-642-73782-4.  Google Scholar

[32]

E. Sanchez-Palencia, Un problème d'ecoulement lent d'un fluide incompressible au travers d'une paroi finement perforée, Homogenization Methods: Theory and Applications in Physics, Collect. Dir. Études Rech. Élec. France, Eyrolles, Paris, 57 (1985), 371-400.   Google Scholar

[33]

M. M. Skriganov, Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators, Trudy Mat. Inst. Steklov., 171 (1985), 122 pp.  Google Scholar

[34]

K. Yoshitomi, Band spectrum of the Laplacian on a slab with the Dirichlet boundary condition on a grid, Kyushu J. Math., 57 (2003), 87-116.  doi: 10.2206/kyushujm.57.87.  Google Scholar

[35]

M. Van Dyke, Perturbation Methods in Fluid Mechanics, Applied Mathematics and Mechanics, Vol. 8 Academic Press, New York-London, 1964.  Google Scholar

Figure 1.  a) The perforated strip $ \Pi^ \varepsilon $ is obtained by removing the double periodic family of holes $ \overline{\omega^ \varepsilon} $ from the strip $ \Pi\equiv(-\infty, \infty)\times(0, H) $. The periodicities $ 1 $ and $ \varepsilon H $ come from the width of he periodicity cell $ \varpi^ \varepsilon $ and the distance between two consecutive holes in the perforation string. b) The periodicity cell $ \varpi^ \varepsilon $ is obtained by removing a periodic family of holes of diameter $ O( \varepsilon) $ from $ \varpi^0\equiv (-1/2, 1/2)\times(0, H) $. It contains one perforation string
Figure 2.  The strip $ \Xi $ with the hole $ \omega $. $ \Xi $ is involved with the unit cell for the homogenization problem (13)-(16)
[1]

Brahim Amaziane, Mladen Jurak, Leonid Pankratov, Anja Vrbaški. Some remarks on the homogenization of immiscible incompressible two-phase flow in double porosity media. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 629-665. doi: 10.3934/dcdsb.2018037

[2]

Gregory A. Chechkin, Tatiana P. Chechkina, Ciro D’Apice, Umberto De Maio. Homogenization in domains randomly perforated along the boundary. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 713-730. doi: 10.3934/dcdsb.2009.12.713

[3]

Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. Homogenization of variational functionals with nonstandard growth in perforated domains. Networks & Heterogeneous Media, 2010, 5 (2) : 189-215. doi: 10.3934/nhm.2010.5.189

[4]

Grégoire Allaire, Yves Capdeboscq, Marjolaine Puel. Homogenization of a one-dimensional spectral problem for a singularly perturbed elliptic operator with Neumann boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 1-31. doi: 10.3934/dcdsb.2012.17.1

[5]

Vsevolod Laptev. Deterministic homogenization for media with barriers. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 29-44. doi: 10.3934/dcdss.2015.8.29

[6]

Sergiu Aizicovici, Nikolaos S. Papageorgiou, Vasile Staicu. Nonlinear Dirichlet problems with double resonance. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1147-1168. doi: 10.3934/cpaa.2017056

[7]

Hakima Bessaih, Yalchin Efendiev, Florin Maris. Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks & Heterogeneous Media, 2015, 10 (2) : 343-367. doi: 10.3934/nhm.2015.10.343

[8]

Leonid Berlyand, Petru Mironescu. Two-parameter homogenization for a Ginzburg-Landau problem in a perforated domain. Networks & Heterogeneous Media, 2008, 3 (3) : 461-487. doi: 10.3934/nhm.2008.3.461

[9]

Patrizia Donato, Florian Gaveau. Homogenization and correctors for the wave equation in non periodic perforated domains. Networks & Heterogeneous Media, 2008, 3 (1) : 97-124. doi: 10.3934/nhm.2008.3.97

[10]

Mamadou Sango. Homogenization of the Neumann problem for a quasilinear elliptic equation in a perforated domain. Networks & Heterogeneous Media, 2010, 5 (2) : 361-384. doi: 10.3934/nhm.2010.5.361

[11]

Sunghan Kim, Ki-Ahm Lee, Henrik Shahgholian. Homogenization of the boundary value for the Dirichlet problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 6843-6864. doi: 10.3934/dcds.2019234

[12]

Peter C. Gibson. On the measurement operator for scattering in layered media. Inverse Problems & Imaging, 2017, 11 (1) : 87-97. doi: 10.3934/ipi.2017005

[13]

Bruno Colbois, Alexandre Girouard. The spectral gap of graphs and Steklov eigenvalues on surfaces. Electronic Research Announcements, 2014, 21: 19-27. doi: 10.3934/era.2014.21.19

[14]

Damien Thomine. A spectral gap for transfer operators of piecewise expanding maps. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 917-944. doi: 10.3934/dcds.2011.30.917

[15]

O. A. Veliev. Essential spectral singularities and the spectral expansion for the Hill operator. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2227-2251. doi: 10.3934/cpaa.2017110

[16]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[17]

Jiann-Sheng Jiang, Chi-Kun Lin, Chi-Hua Liu. Homogenization of the Maxwell's system for conducting media. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 91-107. doi: 10.3934/dcdsb.2008.10.91

[18]

Marco A. Fontelos, Lucía B. Gamboa. On the structure of double layers in Poisson-Boltzmann equation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1939-1967. doi: 10.3934/dcdsb.2012.17.1939

[19]

Teemu Tyni, Valery Serov. Scattering problems for perturbations of the multidimensional biharmonic operator. Inverse Problems & Imaging, 2018, 12 (1) : 205-227. doi: 10.3934/ipi.2018008

[20]

Yernat Assylbekov, Karthik Iyer. Determining rough first order perturbations of the polyharmonic operator. Inverse Problems & Imaging, 2019, 13 (5) : 1045-1066. doi: 10.3934/ipi.2019047

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (38)
  • HTML views (56)
  • Cited by (0)

[Back to Top]