\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Remarks on the Schrödinger-Lohe model

  • * Corresponding author: Hyungjin Huh

    * Corresponding author: Hyungjin Huh

This research was supported by LG Yonam Foundation (of Korea) and Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (2017R1D1A1B03028308)

Abstract Full Text(HTML) Related Papers Cited by
  • We study the Schrödinger-Lohe model. Making use of the principal fundamental matrix $ Y $ of linear ODEs with variable coefficients, the coupled nonlinear Schrödinger-Lohe system is transformed into the decoupled linear Schrödinger equations. The boundedness of $ Y $ is shown for the case of complete synchronization. We also study the cases where the principal fundamental matrices can be derived explicitly.

    Mathematics Subject Classification: 82C10, 34E10, 35C05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] P. Antonelli and P. Marcati, A model of synchronization over quantum networks, J. Phys. A, 50 (2017), 315101, 19 pp. doi: 10.1088/1751-8121/aa79c9.
    [2] R. Bellman, Stability Theory of Differential Equations, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953.
    [3] S. BlanesF. CasasJ. A. Oteo and J. Ros, Magnus and Fer expansions for matrix differential equations: The convergence problem, J. Phys. A, 31 (1998), 259-268.  doi: 10.1088/0305-4470/31/1/023.
    [4] S. BlanesF. CasasJ. A. Oteo and J. Ros, The Magnus expansion and some of its applications, Phys. Rep., 470 (2009), 151-238.  doi: 10.1016/j.physrep.2008.11.001.
    [5] S.-H. Choi, J. Cho and S.-Y. Ha, Practical quantum synchronization for the Schrödinger-Lohe system, J. Phys. A, 49 (2016), 205203, 17 pp. doi: 10.1088/1751-8113/49/20/205203.
    [6] S.-H. Choi and S.-Y. Ha, Quantum synchronization of the Schrödinger-Lohe model, J. Phys. A, 47 (2014), 355104, 16 pp. doi: 10.1088/1751-8113/47/35/355104.
    [7] H. Huh and S.-Y. Ha, Dynamical system approach to synchronization of the coupled Schrödinger-Lohe system, Quart. Appl. Math., 75 (2017), 555-579.  doi: 10.1090/qam/1465.
    [8] H. Huh, S.-Y. Ha and D. Kim, Emergent behaviors of the Schrödinger-Lohe model on cooperative-competitive networks, J. Differential Equations, 263 (2017), 8295–8321. doi: 10.1016/j.jde.2017.08.050.
    [9] H. Huh, S.-Y. Ha and D. Kim, Asymptotic behavior and stability for the Schrödinger-Lohe model, J. Math. Phys., 59 (2018), 102701, 21 pp. doi: 10.1063/1.5041463.
    [10] M. A. Lohe, Quantum synchronization over quantum networks, J. Phys. A, 43 (2010), 465301, 20 pp. doi: 10.1088/1751-8113/43/46/465301.
    [11] M. A. Lohe, Non-Abelian Kuramoto model and synchronization, J. Phys. A, 42 (2009), 395101, 25 pp. doi: 10.1088/1751-8113/42/39/395101.
    [12] W. Magnus, On the exponential solution of differential equations for a linear operator, Comm. Pure Appl. Math., 7 (1954), 649-673.  doi: 10.1002/cpa.3160070404.
  • 加载中
SHARE

Article Metrics

HTML views(209) PDF downloads(386) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return