December  2019, 14(4): 789-804. doi: 10.3934/nhm.2019032

Emergent behavior of Cucker-Smale model with normalized weights and distributed time delays

1. 

Department of Mathematics, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Republic of Korea

2. 

Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica, Università di L'Aquila, Via Vetoio, 67010 L'Aquila, Italy

* Corresponding author: Cristina Pignotti

Received  February 2019 Revised  June 2019 Published  October 2019

Fund Project: The first author was supported by National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP) (No. 2017R1C1B2012918 and 2017R1A4A1014735) and POSCO Science Fellowship of POSCO TJ Park Foundation. The research of the second author was partially supported by the GNAMPA 2018 project Analisi e controllo di modelli differenziali non lineari (INdAM)

We study a Cucker-Smale-type flocking model with distributed time delay where individuals interact with each other through normalized communication weights. Based on a Lyapunov functional approach, we provide sufficient conditions for the velocity alignment behavior. We then show that as the number of individuals $ N $ tends to infinity, the $ N $-particle system can be well approximated by a delayed Vlasov alignment equation. Furthermore, we also establish the global existence of measure-valued solutions for the delayed Vlasov alignment equation and its large-time asymptotic behavior.

Citation: Young-Pil Choi, Cristina Pignotti. Emergent behavior of Cucker-Smale model with normalized weights and distributed time delays. Networks & Heterogeneous Media, 2019, 14 (4) : 789-804. doi: 10.3934/nhm.2019032
References:
[1]

G. AlbiM. Herty and L. Pareschi, Kinetic description of optimal control problems and applications to opinion consensus, Commun. Math. Sci., 13 (2015), 1407-1429.  doi: 10.4310/CMS.2015.v13.n6.a3.  Google Scholar

[2]

N. BellomoM. A. Herrero and A. Tosin, On the dynamics of social conflict: Looking for the black swan, Kinet. Relat. Models, 6 (2013), 459-479.  doi: 10.3934/krm.2013.6.459.  Google Scholar

[3]

A. Borzì and S. Wongkaew, Modeling and control through leadership of a refined flocking system, Math. Models Methods Appl. Sci., 25 (2015), 255-282.  doi: 10.1142/S0218202515500098.  Google Scholar

[4]

J. A. CañizoJ. A. Carrillo and J. A. Rosado, A well-posedness theory in measures for some kinetic models of collective motion, Math. Models Methods Appl. Sci., 21 (2011), 515-539.  doi: 10.1142/S0218202511005131.  Google Scholar

[5]

M. CaponigroM. FornasierB. Piccoli and E. Trélat, Sparse stabilization and control of alignment models, Math. Models Methods Appl. Sci., 25 (2015), 521-564.  doi: 10.1142/S0218202515400059.  Google Scholar

[6]

J. A. CarrilloY.-P. Choi and S. Perez, A review an attractive-repulsive hydrodynamics for consensus in collective behavior, Active Particles Vol.I: Advances in Theory, Models, Applications, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, 1 (2017), 259-298.   Google Scholar

[7]

J. A. CarrilloY.-P. Choi and M. Hauray, The derivation of swarming models: Mean-field limit and Wasserstein distances, Collective Dynamics from Bacteria to Crowds, CISM Courses and Lect., Springer, Vienna, 533 (2014), 1-46.  doi: 10.1007/978-3-7091-1785-9_1.  Google Scholar

[8]

J. A. CarrilloY.-P. Choi and M. Hauray, Local well-posedness of the generalized Cucker-Smale model with singular kernels, MMCS, Mathematical modelling of complex systems, ESAIM Proc. Surveys, EDP Sci., Les Ulis, 47 (2014), 17-35.  doi: 10.1051/proc/201447002.  Google Scholar

[9]

J. A. CarrilloY.-P. ChoiM. Hauray and S. Salem, Mean-field limit for collective behavior models with sharp sensitivity regions, J. Eur. Math. Soc. (JEMS), 21 (2019), 121-161.  doi: 10.4171/JEMS/832.  Google Scholar

[10]

J. A. CarrilloY.-P. ChoiP. B. Mucha and J. Peszek, Sharp conditions to avoid collisions in singular Cucker-Smale interactions, Nonlinear Anal.-Real World Appl., 37 (2017), 317-328.  doi: 10.1016/j.nonrwa.2017.02.017.  Google Scholar

[11]

J. A. CarrilloM. FornasierJ. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236.  doi: 10.1137/090757290.  Google Scholar

[12]

Y.-P. ChoiS.-Y. Ha and Z. C. Li, Emergent dynamics of the Cucker-Smale flocking model and its variants, Active particles, Advances in theory, models, and applications, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, 1 (2017), 299-331.   Google Scholar

[13]

Y.-P. Choi and J. Haskovec, Cucker-Smale model with normalized communication weights and time delay, Kinet. Relat. Models, 10 (2017), 1011-1033.  doi: 10.3934/krm.2017040.  Google Scholar

[14]

Y.-P. Choi and J. Haskovec, Hydrodynamic Cucker-Smale model with normalized communication weights and time delay, SIAM J. Math. Anal., 51 (2019), 2660-2685.  doi: 10.1137/17M1139151.  Google Scholar

[15]

Y.-P. Choi and Z. C. Li, Emergent behavior of Cucker-Smale flocking particles with heterogeneous time delays, Appl. Math. Lett., 86 (2018), 49-56.  doi: 10.1016/j.aml.2018.06.018.  Google Scholar

[16]

Y.-P. Choi, D. Kalise, J. Peszek and A. A. Peters, A collisionless singular Cucker-Smale model with decentralized formation control, SIAM J. Appl. Dyn. Syst., to appear. Google Scholar

[17]

I. D. CouzinJ. KrauseN. R. Franks and S. A. Levin, Effective leadership and decision making in animal groups on the move, Nature, 433 (2005), 513-516.  doi: 10.1038/nature03236.  Google Scholar

[18]

E. CristianiB. Piccoli and A. Tosin, Multiscale modeling of granular flows with application to crowd dynamics, Multiscale Model. Simul., 9 (2011), 155-182.  doi: 10.1137/100797515.  Google Scholar

[19]

F. Cucker and J.-G. Dong, A general collision-avoiding flocking framework, IEEE Trans. Automat. Cont., 56 (2011), 1124-1129.  doi: 10.1109/TAC.2011.2107113.  Google Scholar

[20]

F. Cucker and E. Mordecki, Flocking in noisy environments, J. Math. Pures Appl., 89 (2008), 278-296.  doi: 10.1016/j.matpur.2007.12.002.  Google Scholar

[21]

F. Cucker and S. Smale, Emergent behaviour in flocks, IEEE Trans. Automat. Contr., 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[22]

F. Cucker and S. Smale, On the mathematics of emergence, Japanese Journal of Mathematics, 2 (2007), 197-227.  doi: 10.1007/s11537-007-0647-x.  Google Scholar

[23]

R. ErbanJ. Haškovec and Y. Z. Sun, A Cucker-Smale model with noise and delay, SIAM J. Appl. Math., 76 (2016), 1535-1557.  doi: 10.1137/15M1030467.  Google Scholar

[24] A. Halanay, Differential Equations: Stability, Oscillations, Time Lags, Academic Press, New York and London, 1966.   Google Scholar
[25]

S.-Y. HaK. Lee and D. Levy, Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453-469.  doi: 10.4310/CMS.2009.v7.n2.a9.  Google Scholar

[26]

S.-Y. Ha and J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297-325.  doi: 10.4310/CMS.2009.v7.n2.a2.  Google Scholar

[27]

S.-Y. Ha and M. Slemrod, Flocking dynamics of singularly perturbed oscillator chain and the Cucker-Smale system, J. Dyn. Diff. Equat., 22 (2010), 325-330.  doi: 10.1007/s10884-009-9142-9.  Google Scholar

[28]

S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models, 1 (2008), 415-435.  doi: 10.3934/krm.2008.1.415.  Google Scholar

[29]

S. LemercierA. JelicR. KulpaJ. HuaJ. FehrenbachP. DegondC. Appert- RollandS. Donikian and J. Pettré, Realistic following behaviors for crowd simulation, Comput. Graph. Forum, 31 (2012), 489-498.  doi: 10.1111/j.1467-8659.2012.03028.x.  Google Scholar

[30]

N. A. MecholskyE. Ott and T. M. Antonsen, Obstacle and predator avoidance in a model for flocking, Physica D, 239 (2010), 988-996.  doi: 10.1016/j.physd.2010.02.007.  Google Scholar

[31]

S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behaviour, J. Stat. Phys., 144 (2011), 923-947.  doi: 10.1007/s10955-011-0285-9.  Google Scholar

[32]

J. Peszek, Existence of piecewise weak solutions of a discrete Cucker-Smale's flocking model with a singular communication weight, J. Differential Equations, 257 (2014), 2900-2925.  doi: 10.1016/j.jde.2014.06.003.  Google Scholar

[33]

B. PiccoliF. Rossi and E. Trélat, Control to flocking of the kinetic Cucker-Smale model, SIAM J. Math. Anal., 47 (2015), 4685-4719.  doi: 10.1137/140996501.  Google Scholar

[34]

C. Pignotti and I. Reche Vallejo, Flocking estimates for the Cucker-Smale model with time lag and hierarchical leadership, J. Math. Anal. Appl., 464 (2018), 1313-1332.  doi: 10.1016/j.jmaa.2018.04.070.  Google Scholar

[35]

C. Pignotti and I. Reche Vallejo, Asymptotic analysis of a Cucker-Smale system with leadership and distributed delay, in Trends in Control Theory and Partial Differential Equations, Springer Indam Ser., 32 (2019), 233–253. doi: 10.1007/978-3-030-17949-6_12.  Google Scholar

[36]

C. Pignotti and E. Trélat, Convergence to consensus of the general finite-dimensional Cucker-Smale model with time-varying delays, Commun. Math. Sci., 16 (2018), 2053-2076.  doi: 10.4310/CMS.2018.v16.n8.a1.  Google Scholar

[37]

J. Shen, Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2007/08), 694-719.  doi: 10.1137/060673254.  Google Scholar

[38]

C. H. Tan, A discontinuous Galerkin method on kinetic flocking models, Math. Models Methods Appl. Sci., 27 (2017), 1199-1221.  doi: 10.1142/S0218202517400139.  Google Scholar

[39]

G. Toscani, Kinetic models of opinion formation, Commun. Math. Sci., 4 (2006), 481-496.  doi: 10.4310/CMS.2006.v4.n3.a1.  Google Scholar

[40]

T. VicsekA. CzirokE. Ben-JacobI. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.  doi: 10.1103/PhysRevLett.75.1226.  Google Scholar

show all references

References:
[1]

G. AlbiM. Herty and L. Pareschi, Kinetic description of optimal control problems and applications to opinion consensus, Commun. Math. Sci., 13 (2015), 1407-1429.  doi: 10.4310/CMS.2015.v13.n6.a3.  Google Scholar

[2]

N. BellomoM. A. Herrero and A. Tosin, On the dynamics of social conflict: Looking for the black swan, Kinet. Relat. Models, 6 (2013), 459-479.  doi: 10.3934/krm.2013.6.459.  Google Scholar

[3]

A. Borzì and S. Wongkaew, Modeling and control through leadership of a refined flocking system, Math. Models Methods Appl. Sci., 25 (2015), 255-282.  doi: 10.1142/S0218202515500098.  Google Scholar

[4]

J. A. CañizoJ. A. Carrillo and J. A. Rosado, A well-posedness theory in measures for some kinetic models of collective motion, Math. Models Methods Appl. Sci., 21 (2011), 515-539.  doi: 10.1142/S0218202511005131.  Google Scholar

[5]

M. CaponigroM. FornasierB. Piccoli and E. Trélat, Sparse stabilization and control of alignment models, Math. Models Methods Appl. Sci., 25 (2015), 521-564.  doi: 10.1142/S0218202515400059.  Google Scholar

[6]

J. A. CarrilloY.-P. Choi and S. Perez, A review an attractive-repulsive hydrodynamics for consensus in collective behavior, Active Particles Vol.I: Advances in Theory, Models, Applications, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, 1 (2017), 259-298.   Google Scholar

[7]

J. A. CarrilloY.-P. Choi and M. Hauray, The derivation of swarming models: Mean-field limit and Wasserstein distances, Collective Dynamics from Bacteria to Crowds, CISM Courses and Lect., Springer, Vienna, 533 (2014), 1-46.  doi: 10.1007/978-3-7091-1785-9_1.  Google Scholar

[8]

J. A. CarrilloY.-P. Choi and M. Hauray, Local well-posedness of the generalized Cucker-Smale model with singular kernels, MMCS, Mathematical modelling of complex systems, ESAIM Proc. Surveys, EDP Sci., Les Ulis, 47 (2014), 17-35.  doi: 10.1051/proc/201447002.  Google Scholar

[9]

J. A. CarrilloY.-P. ChoiM. Hauray and S. Salem, Mean-field limit for collective behavior models with sharp sensitivity regions, J. Eur. Math. Soc. (JEMS), 21 (2019), 121-161.  doi: 10.4171/JEMS/832.  Google Scholar

[10]

J. A. CarrilloY.-P. ChoiP. B. Mucha and J. Peszek, Sharp conditions to avoid collisions in singular Cucker-Smale interactions, Nonlinear Anal.-Real World Appl., 37 (2017), 317-328.  doi: 10.1016/j.nonrwa.2017.02.017.  Google Scholar

[11]

J. A. CarrilloM. FornasierJ. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236.  doi: 10.1137/090757290.  Google Scholar

[12]

Y.-P. ChoiS.-Y. Ha and Z. C. Li, Emergent dynamics of the Cucker-Smale flocking model and its variants, Active particles, Advances in theory, models, and applications, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, 1 (2017), 299-331.   Google Scholar

[13]

Y.-P. Choi and J. Haskovec, Cucker-Smale model with normalized communication weights and time delay, Kinet. Relat. Models, 10 (2017), 1011-1033.  doi: 10.3934/krm.2017040.  Google Scholar

[14]

Y.-P. Choi and J. Haskovec, Hydrodynamic Cucker-Smale model with normalized communication weights and time delay, SIAM J. Math. Anal., 51 (2019), 2660-2685.  doi: 10.1137/17M1139151.  Google Scholar

[15]

Y.-P. Choi and Z. C. Li, Emergent behavior of Cucker-Smale flocking particles with heterogeneous time delays, Appl. Math. Lett., 86 (2018), 49-56.  doi: 10.1016/j.aml.2018.06.018.  Google Scholar

[16]

Y.-P. Choi, D. Kalise, J. Peszek and A. A. Peters, A collisionless singular Cucker-Smale model with decentralized formation control, SIAM J. Appl. Dyn. Syst., to appear. Google Scholar

[17]

I. D. CouzinJ. KrauseN. R. Franks and S. A. Levin, Effective leadership and decision making in animal groups on the move, Nature, 433 (2005), 513-516.  doi: 10.1038/nature03236.  Google Scholar

[18]

E. CristianiB. Piccoli and A. Tosin, Multiscale modeling of granular flows with application to crowd dynamics, Multiscale Model. Simul., 9 (2011), 155-182.  doi: 10.1137/100797515.  Google Scholar

[19]

F. Cucker and J.-G. Dong, A general collision-avoiding flocking framework, IEEE Trans. Automat. Cont., 56 (2011), 1124-1129.  doi: 10.1109/TAC.2011.2107113.  Google Scholar

[20]

F. Cucker and E. Mordecki, Flocking in noisy environments, J. Math. Pures Appl., 89 (2008), 278-296.  doi: 10.1016/j.matpur.2007.12.002.  Google Scholar

[21]

F. Cucker and S. Smale, Emergent behaviour in flocks, IEEE Trans. Automat. Contr., 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[22]

F. Cucker and S. Smale, On the mathematics of emergence, Japanese Journal of Mathematics, 2 (2007), 197-227.  doi: 10.1007/s11537-007-0647-x.  Google Scholar

[23]

R. ErbanJ. Haškovec and Y. Z. Sun, A Cucker-Smale model with noise and delay, SIAM J. Appl. Math., 76 (2016), 1535-1557.  doi: 10.1137/15M1030467.  Google Scholar

[24] A. Halanay, Differential Equations: Stability, Oscillations, Time Lags, Academic Press, New York and London, 1966.   Google Scholar
[25]

S.-Y. HaK. Lee and D. Levy, Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453-469.  doi: 10.4310/CMS.2009.v7.n2.a9.  Google Scholar

[26]

S.-Y. Ha and J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297-325.  doi: 10.4310/CMS.2009.v7.n2.a2.  Google Scholar

[27]

S.-Y. Ha and M. Slemrod, Flocking dynamics of singularly perturbed oscillator chain and the Cucker-Smale system, J. Dyn. Diff. Equat., 22 (2010), 325-330.  doi: 10.1007/s10884-009-9142-9.  Google Scholar

[28]

S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models, 1 (2008), 415-435.  doi: 10.3934/krm.2008.1.415.  Google Scholar

[29]

S. LemercierA. JelicR. KulpaJ. HuaJ. FehrenbachP. DegondC. Appert- RollandS. Donikian and J. Pettré, Realistic following behaviors for crowd simulation, Comput. Graph. Forum, 31 (2012), 489-498.  doi: 10.1111/j.1467-8659.2012.03028.x.  Google Scholar

[30]

N. A. MecholskyE. Ott and T. M. Antonsen, Obstacle and predator avoidance in a model for flocking, Physica D, 239 (2010), 988-996.  doi: 10.1016/j.physd.2010.02.007.  Google Scholar

[31]

S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behaviour, J. Stat. Phys., 144 (2011), 923-947.  doi: 10.1007/s10955-011-0285-9.  Google Scholar

[32]

J. Peszek, Existence of piecewise weak solutions of a discrete Cucker-Smale's flocking model with a singular communication weight, J. Differential Equations, 257 (2014), 2900-2925.  doi: 10.1016/j.jde.2014.06.003.  Google Scholar

[33]

B. PiccoliF. Rossi and E. Trélat, Control to flocking of the kinetic Cucker-Smale model, SIAM J. Math. Anal., 47 (2015), 4685-4719.  doi: 10.1137/140996501.  Google Scholar

[34]

C. Pignotti and I. Reche Vallejo, Flocking estimates for the Cucker-Smale model with time lag and hierarchical leadership, J. Math. Anal. Appl., 464 (2018), 1313-1332.  doi: 10.1016/j.jmaa.2018.04.070.  Google Scholar

[35]

C. Pignotti and I. Reche Vallejo, Asymptotic analysis of a Cucker-Smale system with leadership and distributed delay, in Trends in Control Theory and Partial Differential Equations, Springer Indam Ser., 32 (2019), 233–253. doi: 10.1007/978-3-030-17949-6_12.  Google Scholar

[36]

C. Pignotti and E. Trélat, Convergence to consensus of the general finite-dimensional Cucker-Smale model with time-varying delays, Commun. Math. Sci., 16 (2018), 2053-2076.  doi: 10.4310/CMS.2018.v16.n8.a1.  Google Scholar

[37]

J. Shen, Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2007/08), 694-719.  doi: 10.1137/060673254.  Google Scholar

[38]

C. H. Tan, A discontinuous Galerkin method on kinetic flocking models, Math. Models Methods Appl. Sci., 27 (2017), 1199-1221.  doi: 10.1142/S0218202517400139.  Google Scholar

[39]

G. Toscani, Kinetic models of opinion formation, Commun. Math. Sci., 4 (2006), 481-496.  doi: 10.4310/CMS.2006.v4.n3.a1.  Google Scholar

[40]

T. VicsekA. CzirokE. Ben-JacobI. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.  doi: 10.1103/PhysRevLett.75.1226.  Google Scholar

[1]

Lining Ru, Xiaoping Xue. Flocking of Cucker-Smale model with intrinsic dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6817-6835. doi: 10.3934/dcdsb.2019168

[2]

Young-Pil Choi, Jan Haskovec. Cucker-Smale model with normalized communication weights and time delay. Kinetic & Related Models, 2017, 10 (4) : 1011-1033. doi: 10.3934/krm.2017040

[3]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[4]

Chun-Hsien Li, Suh-Yuh Yang. A new discrete Cucker-Smale flocking model under hierarchical leadership. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2587-2599. doi: 10.3934/dcdsb.2016062

[5]

Seung-Yeal Ha, Jinwook Jung, Peter Kuchling. Emergence of anomalous flocking in the fractional Cucker-Smale model. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5465-5489. doi: 10.3934/dcds.2019223

[6]

Jiu-Gang Dong, Seung-Yeal Ha, Doheon Kim. Interplay of time-delay and velocity alignment in the Cucker-Smale model on a general digraph. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5569-5596. doi: 10.3934/dcdsb.2019072

[7]

Chiun-Chuan Chen, Seung-Yeal Ha, Xiongtao Zhang. The global well-posedness of the kinetic Cucker-Smale flocking model with chemotactic movements. Communications on Pure & Applied Analysis, 2018, 17 (2) : 505-538. doi: 10.3934/cpaa.2018028

[8]

Hyeong-Ohk Bae, Young-Pil Choi, Seung-Yeal Ha, Moon-Jin Kang. Asymptotic flocking dynamics of Cucker-Smale particles immersed in compressible fluids. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4419-4458. doi: 10.3934/dcds.2014.34.4419

[9]

Agnieszka B. Malinowska, Tatiana Odzijewicz. Optimal control of the discrete-time fractional-order Cucker-Smale model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 347-357. doi: 10.3934/dcdsb.2018023

[10]

Young-Pil Choi, Seung-Yeal Ha, Jeongho Kim. Propagation of regularity and finite-time collisions for the thermomechanical Cucker-Smale model with a singular communication. Networks & Heterogeneous Media, 2018, 13 (3) : 379-407. doi: 10.3934/nhm.2018017

[11]

Young-Pil Choi, Samir Salem. Cucker-Smale flocking particles with multiplicative noises: Stochastic mean-field limit and phase transition. Kinetic & Related Models, 2019, 12 (3) : 573-592. doi: 10.3934/krm.2019023

[12]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[13]

Marco Caponigro, Massimo Fornasier, Benedetto Piccoli, Emmanuel Trélat. Sparse stabilization and optimal control of the Cucker-Smale model. Mathematical Control & Related Fields, 2013, 3 (4) : 447-466. doi: 10.3934/mcrf.2013.3.447

[14]

Seung-Yeal Ha, Dongnam Ko, Yinglong Zhang. Remarks on the critical coupling strength for the Cucker-Smale model with unit speed. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2763-2793. doi: 10.3934/dcds.2018116

[15]

Seung-Yeal Ha, Dongnam Ko, Yinglong Zhang, Xiongtao Zhang. Emergent dynamics in the interactions of Cucker-Smale ensembles. Kinetic & Related Models, 2017, 10 (3) : 689-723. doi: 10.3934/krm.2017028

[16]

Ioannis Markou. Collision-avoiding in the singular Cucker-Smale model with nonlinear velocity couplings. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5245-5260. doi: 10.3934/dcds.2018232

[17]

Seung-Yeal Ha, Jeongho Kim, Xiongtao Zhang. Uniform stability of the Cucker-Smale model and its application to the Mean-Field limit. Kinetic & Related Models, 2018, 11 (5) : 1157-1181. doi: 10.3934/krm.2018045

[18]

Seung-Yeal Ha, Jeongho Kim, Peter Pickl, Xiongtao Zhang. A probabilistic approach for the mean-field limit to the Cucker-Smale model with a singular communication. Kinetic & Related Models, 2019, 12 (5) : 1045-1067. doi: 10.3934/krm.2019039

[19]

Ewa Girejko, Luís Machado, Agnieszka B. Malinowska, Natália Martins. On consensus in the Cucker–Smale type model on isolated time scales. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 77-89. doi: 10.3934/dcdss.2018005

[20]

Laure Pédèches. Asymptotic properties of various stochastic Cucker-Smale dynamics. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2731-2762. doi: 10.3934/dcds.2018115

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (41)
  • HTML views (48)
  • Cited by (0)

Other articles
by authors

[Back to Top]