March  2020, 15(1): 29-56. doi: 10.3934/nhm.2020002

Mathematical analysis of transmission properties of electromagnetic meta-materials

1. 

Angewandte Mathematik: Institut für Analysis und Numerik, Westfälische Wilhelms-Universität Münster, Einsteinstr. 62, DE-48149 Münster, Germany

2. 

Fakultät für Mathematik, TU Dortmund, Vogelpothsweg 87, DE-44227 Dortmund, Germany

3. 

Institut für Mathematik, Universität Augsburg, Universitätsstr. 14, DE-86159 Augsburg, Germany

*Corresponding author: Ben Schweizer

Received  September 2018 Revised  October 2019 Published  December 2019

Fund Project: This work was supported by the Deutsche Forschungsgemeinschaft (DFG) in the project "Wellenausbreitung in periodischen Strukturen und Mechanismen negativer Brechung" (grant OH 98/6-1 and SCHW 639/6-1).

We study time-harmonic Maxwell's equations in meta-materials that use either perfect conductors or high-contrast materials. Based on known effective equations for perfectly conducting inclusions, we calculate the transmission and reflection coefficients for four different geometries. For high-contrast materials and essentially two-dimensional geometries, we analyze parallel electric and parallel magnetic fields and discuss their potential to exhibit transmission through a sample of meta-material. For a numerical study, one often needs a method that is adapted to heterogeneous media; we consider here a Heterogeneous Multiscale Method for high contrast materials. The qualitative transmission properties, as predicted by the analysis, are confirmed with numerical experiments. The numerical results also underline the applicability of the multiscale method.

Citation: Mario Ohlberger, Ben Schweizer, Maik Urban, Barbara Verfürth. Mathematical analysis of transmission properties of electromagnetic meta-materials. Networks and Heterogeneous Media, 2020, 15 (1) : 29-56. doi: 10.3934/nhm.2020002
References:
[1]

A. Abdulle, On a priori error analysis of fully discrete heterogeneous multiscale FEM, Multiscale Model. Simul., 4 (2005), 447-459.  doi: 10.1137/040607137.

[2]

P. BastianM. BlattA. DednerC. EngwerR. KlöfkornR. KornhuberM. Ohlberger and O. Sander, A generic grid interface for parallel and adaptive scientific computing. Ⅱ. Implementation and tests in DUNE, Computing, 82 (2008), 121-138.  doi: 10.1007/s00607-008-0004-9.

[3]

P. BastianM. BlattA. DednerC. EngwerR. KlöfkornM. Ohlberger and O. Sander, A generic grid interface for parallel and adaptive scientific computing. I. Abstract framework, Computing, 82 (2008), 103-119.  doi: 10.1007/s00607-008-0003-x.

[4]

A. BonitoJ.-L. Guermond and F. Luddens, Regularity of the Maxwell equations in heterogeneous media and Lipschitz domains, J. Math. Anal. Appl., 408 (2013), 498-512.  doi: 10.1016/j.jmaa.2013.06.018.

[5]

G. Bouchitté and C. Bourel, Multiscale nanorod metamaterials and realizable permittivity tensors, Commun. Comput. Phys., 11 (2012), 489-507.  doi: 10.4208/cicp.171209.110810s.

[6]

G. BouchittéC. Bourel and D. Felbacq, Homogenization of the 3D Maxwell system near resonances and artificial magnetism, C. R. Math. Acad. Sci. Paris, 347 (2009), 571-576.  doi: 10.1016/j.crma.2009.02.027.

[7]

G. BouchittéC. Bourel and D. Felbacq, Homogenization near resonances and artificial magnetism in three dimensional dielectric metamaterials, Arch. Ration. Mech. Anal., 225 (2017), 1233-1277.  doi: 10.1007/s00205-017-1132-1.

[8]

G. Bouchitté and D. Felbacq, Homogenization near resonances and artificial magnetism from dielectrics, C. R. Math. Acad. Sci. Paris, 339 (2004), 377-382.  doi: 10.1016/j.crma.2004.06.018.

[9]

G. Bouchitté and D. Felbacq, Homogenization of a wire photonic crystal: The case of small volume fraction, SIAM J. Appl. Math., 66 (2006), 2061-2084.  doi: 10.1137/050633147.

[10]

G. Bouchitté and B. Schweizer, Homogenization of Maxwell's equations in a split ring geometry, Multiscale Model. Simul., 8 (2010), 717-750.  doi: 10.1137/09074557X.

[11]

G. Bouchitté and B. Schweizer, Plasmonic waves allow perfect transmission through sub-wavelength metallic gratings, Netw. Heterog. Media, 8 (2013), 857-878.  doi: 10.3934/nhm.2013.8.857.

[12]

L. CaoY. ZhangW. Allegretto and Y. Lin, Multiscale asymptotic method for Maxwell's equations in composite materials, SIAM J. Numer. Anal., 47 (2010), 4257-4289.  doi: 10.1137/080741276.

[13]

K. Cherednichenko and S. Cooper, Homogenization of the system of high-contrast Maxwell equations, Mathematika, 61 (2015), 475-500.  doi: 10.1112/S0025579314000424.

[14]

K. Cherednichenko and S. Cooper, Asymptotic behaviour of the spectra of systems of Maxwell equations in periodic composite media with high contrast, Mathematika, 64 (2018), 583-605.  doi: 10.1112/S0025579318000062.

[15]

V. T. Chu and V. H. Hoang, High-dimensional finite elements for multiscale maxwell-type equations, IMA Journal of Numerical Analysis, 38 (2018), 227-270.  doi: 10.1093/imanum/drx001.

[16]

E. T. Chung and Y. Li, Adaptive generalized multiscale finite element methods for H(curl)-elliptic problems with heterogeneous coefficients, J. Comput. Appl. Math., 345 (2019), 357-373.  doi: 10.1016/j.cam.2018.06.052.

[17]

P. Ciarlet Jr.S. Fliss and C. Stohrer, On the approximation of electromagnetic fields by edge finite elements. Part 2: A heterogeneous multiscale method for Maxwell's equations, Comput. Math. Appl., 73 (2017), 1900-1919.  doi: 10.1016/j.camwa.2017.02.043.

[18]

M. Costabel and M. Dauge, Singularities of electromagnetic fields in polyhedral domains, Arch. Ration. Mech. Anal., 151 (2000), 221-276.  doi: 10.1007/s002050050197.

[19]

M. CostabelM. Dauge and S. Nicaise, Singularities of Maxwell interface problems, M2AN Math. Model. Numer. Anal., 33 (1999), 627-649.  doi: 10.1051/m2an:1999155.

[20]

W. EP. Ming and P. Zhang, Analysis of the heterogeneous multiscale method for elliptic homogenization problems, J. Amer. Math. Soc., 18 (2005), 121-156.  doi: 10.1090/S0894-0347-04-00469-2.

[21]

W. E and B. Engquist, The heterogeneous multiscale methods, Commun. Math. Sci., 1 (2003), 87–132, URL http://projecteuclid.org/euclid.cms/1118150402. doi: 10.4310/CMS.2003.v1.n1.a8.

[22]

W. E and B. Engquist, The heterogeneous multi-scale method for homogenization problems, in Multiscale Methods in Science and Engineering, vol. 44 of Lect. Notes Comput. Sci. Eng., Springer, Berlin, 2005, 89–110. doi: 10.1007/3-540-26444-2_4.

[23]

A. Efros and A. Pokrovsky, Dielectroc photonic crystal as medium with negative electric permittivity and magnetic permeability, Solid State Communications, 129 (2004), 643-647. 

[24]

D. Felbacq and G. Bouchitté, Homogenization of a set of parallel fibres, Waves Random Media, 7 (1997), 245-256.  doi: 10.1088/0959-7174/7/2/006.

[25]

D. GallistlP. Henning and B. Verfürth, Numerical homogenization of H(curl)-problems, SIAM J. Numer. Anal., 56 (2018), 1570-1596.  doi: 10.1137/17M1133932.

[26]

P. HenningM. Ohlberger and B. Verfürth, A new Heterogeneous Multiscale Method for time-harmonic Maxwell's equations, SIAM J. Numer. Anal., 54 (2016), 3493-3522.  doi: 10.1137/15M1039225.

[27]

M. Hochbruck and C. Stohrer, Finite element heterogeneous multiscale method for time-dependent Maxwell's equations, in Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016 (eds. M. Bittencourt, N. Dumont and J. Hesthaven), vol. 119 of Lect. Notes Comput. Sci. Eng., Springer, Cham, 2017, 269–281, URL https://doi.org/10.1007/978-3-319-65870-4_18.

[28]

V. V. Jikov, S. M. Kozlov and O. A. Oleĭnik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994, URL https://doi.org/10.1007/978-3-642-84659-5, Translated from the Russian by G. A. Yosifian. doi: 10.1007/978-3-642-84659-5.

[29]

I. V. Kamotski and V. P. Smyshlyaev, Two-scale homogenization for a general class of high contrast PDE systems with periodic coefficients, Applicable Analysis, 98 (2019), 64-90.  doi: 10.1080/00036811.2018.1441994.

[30]

A. Lamacz and B. Schweizer, A negative index meta-material for Maxwell's equations, SIAM J. Math. Anal., 48 (2016), 4155-4174.  doi: 10.1137/16M1064246.

[31]

A. Lamacz and B. Schweizer, Effective Maxwell equations in a geometry with flat rings of arbitrary shape, SIAM J. Math. Anal., 45 (2013), 1460-1494.  doi: 10.1137/120874321.

[32]

R. Lipton and B. Schweizer, Effective Maxwell's equations for perfectly conducting split ring resonators, Arch. Ration. Mech. Anal., 229 (2018), 1197-1221.  doi: 10.1007/s00205-018-1237-1.

[33]

C. Luo, S. G. Johnson, J. Joannopolous and J. Pendry, All-angle negative refraction without negative effective index, Phys. Rev. B, 65 (2002), 201104(R). doi: 10.1103/PhysRevB.65.201104.

[34]

R. Milk and F. Schindler, dune-gdt, 2015, https://dx.doi.org/10.5281/zenodo.35389.

[35]

G. W. Milton, Realizability of metamaterials with prescribed electric permittivity and magnetic permeability tensors, New Journal of Physics, 12 (2010), 033035. doi: 10.1088/1367-2630/12/3/033035.

[36] P. Monk, Finite Element Methods for Maxwell's Equations, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003.  doi: 10.1093/acprof:oso/9780198508885.001.0001.
[37]

M. Ohlberger, A posteriori error estimates for the heterogeneous multiscale finite element method for elliptic homogenization problems, Multiscale Model. Simul., 4 (2005), 88–114 (electronic). doi: 10.1137/040605229.

[38]

M. Ohlberger and B. Verfürth, A new heterogeneous multiscale method for the Helmholtz equation with high contrast, Mulitscale Model. Simul., 16 (2018), 385-411.  doi: 10.1137/16M1108820.

[39]

A. Pokrovsky and A. Efros, Diffraction theory and focusing of light by a slab of left-handed material, Physica B: Condensed Matter, 338 (2003), 333–337, Proceedings of the Sixth International Conference on Electrical Transport and Optical Properties of Inhomogeneous Media. doi: 10.1016/j.physb.2003.08.015.

[40]

B. Schweizer and M. Urban, Effective Maxwell's equations in general periodic microstructures, Applicable Analysis, 97 (2017), 2210-2230.  doi: 10.1080/00036811.2017.1359563.

[41]

B. Schweizer, Resonance meets homogenization: Construction of meta-materials with astonishing properties, Jahresber. Dtsch. Math.-Ver., 119 (2017), 31-51.  doi: 10.1365/s13291-016-0153-2.

[42]

V. P. Smyshlyaev, Propagation and localization of elastic waves in highly anisotropic periodic composites via two-scale homogenization, Mech. Mater., 41 (2009), 434-447.  doi: 10.1016/j.mechmat.2009.01.009.

[43]

B. Verfürth, Heterogeneous Multiscale method for the Maxwell equations with high contrast, ESAIM Math. Model. Numer. Anal., 53 (2019), 35-61.  doi: 10.1051/m2an/2018064.

[44]

V. V. Zhikov, On an extension and an application of the two-scale convergence method, Sbornik Mathematics, 191 (2000), 973-1014.  doi: 10.1070/SM2000v191n07ABEH000491.

[45]

V. V. Zhikov, On spectrum gaps of some divergent elliptic operators with periodic coefficients, St Petersburg Math. J., 16 (2005), 773-790.  doi: 10.1090/S1061-0022-05-00878-2.

show all references

References:
[1]

A. Abdulle, On a priori error analysis of fully discrete heterogeneous multiscale FEM, Multiscale Model. Simul., 4 (2005), 447-459.  doi: 10.1137/040607137.

[2]

P. BastianM. BlattA. DednerC. EngwerR. KlöfkornR. KornhuberM. Ohlberger and O. Sander, A generic grid interface for parallel and adaptive scientific computing. Ⅱ. Implementation and tests in DUNE, Computing, 82 (2008), 121-138.  doi: 10.1007/s00607-008-0004-9.

[3]

P. BastianM. BlattA. DednerC. EngwerR. KlöfkornM. Ohlberger and O. Sander, A generic grid interface for parallel and adaptive scientific computing. I. Abstract framework, Computing, 82 (2008), 103-119.  doi: 10.1007/s00607-008-0003-x.

[4]

A. BonitoJ.-L. Guermond and F. Luddens, Regularity of the Maxwell equations in heterogeneous media and Lipschitz domains, J. Math. Anal. Appl., 408 (2013), 498-512.  doi: 10.1016/j.jmaa.2013.06.018.

[5]

G. Bouchitté and C. Bourel, Multiscale nanorod metamaterials and realizable permittivity tensors, Commun. Comput. Phys., 11 (2012), 489-507.  doi: 10.4208/cicp.171209.110810s.

[6]

G. BouchittéC. Bourel and D. Felbacq, Homogenization of the 3D Maxwell system near resonances and artificial magnetism, C. R. Math. Acad. Sci. Paris, 347 (2009), 571-576.  doi: 10.1016/j.crma.2009.02.027.

[7]

G. BouchittéC. Bourel and D. Felbacq, Homogenization near resonances and artificial magnetism in three dimensional dielectric metamaterials, Arch. Ration. Mech. Anal., 225 (2017), 1233-1277.  doi: 10.1007/s00205-017-1132-1.

[8]

G. Bouchitté and D. Felbacq, Homogenization near resonances and artificial magnetism from dielectrics, C. R. Math. Acad. Sci. Paris, 339 (2004), 377-382.  doi: 10.1016/j.crma.2004.06.018.

[9]

G. Bouchitté and D. Felbacq, Homogenization of a wire photonic crystal: The case of small volume fraction, SIAM J. Appl. Math., 66 (2006), 2061-2084.  doi: 10.1137/050633147.

[10]

G. Bouchitté and B. Schweizer, Homogenization of Maxwell's equations in a split ring geometry, Multiscale Model. Simul., 8 (2010), 717-750.  doi: 10.1137/09074557X.

[11]

G. Bouchitté and B. Schweizer, Plasmonic waves allow perfect transmission through sub-wavelength metallic gratings, Netw. Heterog. Media, 8 (2013), 857-878.  doi: 10.3934/nhm.2013.8.857.

[12]

L. CaoY. ZhangW. Allegretto and Y. Lin, Multiscale asymptotic method for Maxwell's equations in composite materials, SIAM J. Numer. Anal., 47 (2010), 4257-4289.  doi: 10.1137/080741276.

[13]

K. Cherednichenko and S. Cooper, Homogenization of the system of high-contrast Maxwell equations, Mathematika, 61 (2015), 475-500.  doi: 10.1112/S0025579314000424.

[14]

K. Cherednichenko and S. Cooper, Asymptotic behaviour of the spectra of systems of Maxwell equations in periodic composite media with high contrast, Mathematika, 64 (2018), 583-605.  doi: 10.1112/S0025579318000062.

[15]

V. T. Chu and V. H. Hoang, High-dimensional finite elements for multiscale maxwell-type equations, IMA Journal of Numerical Analysis, 38 (2018), 227-270.  doi: 10.1093/imanum/drx001.

[16]

E. T. Chung and Y. Li, Adaptive generalized multiscale finite element methods for H(curl)-elliptic problems with heterogeneous coefficients, J. Comput. Appl. Math., 345 (2019), 357-373.  doi: 10.1016/j.cam.2018.06.052.

[17]

P. Ciarlet Jr.S. Fliss and C. Stohrer, On the approximation of electromagnetic fields by edge finite elements. Part 2: A heterogeneous multiscale method for Maxwell's equations, Comput. Math. Appl., 73 (2017), 1900-1919.  doi: 10.1016/j.camwa.2017.02.043.

[18]

M. Costabel and M. Dauge, Singularities of electromagnetic fields in polyhedral domains, Arch. Ration. Mech. Anal., 151 (2000), 221-276.  doi: 10.1007/s002050050197.

[19]

M. CostabelM. Dauge and S. Nicaise, Singularities of Maxwell interface problems, M2AN Math. Model. Numer. Anal., 33 (1999), 627-649.  doi: 10.1051/m2an:1999155.

[20]

W. EP. Ming and P. Zhang, Analysis of the heterogeneous multiscale method for elliptic homogenization problems, J. Amer. Math. Soc., 18 (2005), 121-156.  doi: 10.1090/S0894-0347-04-00469-2.

[21]

W. E and B. Engquist, The heterogeneous multiscale methods, Commun. Math. Sci., 1 (2003), 87–132, URL http://projecteuclid.org/euclid.cms/1118150402. doi: 10.4310/CMS.2003.v1.n1.a8.

[22]

W. E and B. Engquist, The heterogeneous multi-scale method for homogenization problems, in Multiscale Methods in Science and Engineering, vol. 44 of Lect. Notes Comput. Sci. Eng., Springer, Berlin, 2005, 89–110. doi: 10.1007/3-540-26444-2_4.

[23]

A. Efros and A. Pokrovsky, Dielectroc photonic crystal as medium with negative electric permittivity and magnetic permeability, Solid State Communications, 129 (2004), 643-647. 

[24]

D. Felbacq and G. Bouchitté, Homogenization of a set of parallel fibres, Waves Random Media, 7 (1997), 245-256.  doi: 10.1088/0959-7174/7/2/006.

[25]

D. GallistlP. Henning and B. Verfürth, Numerical homogenization of H(curl)-problems, SIAM J. Numer. Anal., 56 (2018), 1570-1596.  doi: 10.1137/17M1133932.

[26]

P. HenningM. Ohlberger and B. Verfürth, A new Heterogeneous Multiscale Method for time-harmonic Maxwell's equations, SIAM J. Numer. Anal., 54 (2016), 3493-3522.  doi: 10.1137/15M1039225.

[27]

M. Hochbruck and C. Stohrer, Finite element heterogeneous multiscale method for time-dependent Maxwell's equations, in Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016 (eds. M. Bittencourt, N. Dumont and J. Hesthaven), vol. 119 of Lect. Notes Comput. Sci. Eng., Springer, Cham, 2017, 269–281, URL https://doi.org/10.1007/978-3-319-65870-4_18.

[28]

V. V. Jikov, S. M. Kozlov and O. A. Oleĭnik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994, URL https://doi.org/10.1007/978-3-642-84659-5, Translated from the Russian by G. A. Yosifian. doi: 10.1007/978-3-642-84659-5.

[29]

I. V. Kamotski and V. P. Smyshlyaev, Two-scale homogenization for a general class of high contrast PDE systems with periodic coefficients, Applicable Analysis, 98 (2019), 64-90.  doi: 10.1080/00036811.2018.1441994.

[30]

A. Lamacz and B. Schweizer, A negative index meta-material for Maxwell's equations, SIAM J. Math. Anal., 48 (2016), 4155-4174.  doi: 10.1137/16M1064246.

[31]

A. Lamacz and B. Schweizer, Effective Maxwell equations in a geometry with flat rings of arbitrary shape, SIAM J. Math. Anal., 45 (2013), 1460-1494.  doi: 10.1137/120874321.

[32]

R. Lipton and B. Schweizer, Effective Maxwell's equations for perfectly conducting split ring resonators, Arch. Ration. Mech. Anal., 229 (2018), 1197-1221.  doi: 10.1007/s00205-018-1237-1.

[33]

C. Luo, S. G. Johnson, J. Joannopolous and J. Pendry, All-angle negative refraction without negative effective index, Phys. Rev. B, 65 (2002), 201104(R). doi: 10.1103/PhysRevB.65.201104.

[34]

R. Milk and F. Schindler, dune-gdt, 2015, https://dx.doi.org/10.5281/zenodo.35389.

[35]

G. W. Milton, Realizability of metamaterials with prescribed electric permittivity and magnetic permeability tensors, New Journal of Physics, 12 (2010), 033035. doi: 10.1088/1367-2630/12/3/033035.

[36] P. Monk, Finite Element Methods for Maxwell's Equations, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003.  doi: 10.1093/acprof:oso/9780198508885.001.0001.
[37]

M. Ohlberger, A posteriori error estimates for the heterogeneous multiscale finite element method for elliptic homogenization problems, Multiscale Model. Simul., 4 (2005), 88–114 (electronic). doi: 10.1137/040605229.

[38]

M. Ohlberger and B. Verfürth, A new heterogeneous multiscale method for the Helmholtz equation with high contrast, Mulitscale Model. Simul., 16 (2018), 385-411.  doi: 10.1137/16M1108820.

[39]

A. Pokrovsky and A. Efros, Diffraction theory and focusing of light by a slab of left-handed material, Physica B: Condensed Matter, 338 (2003), 333–337, Proceedings of the Sixth International Conference on Electrical Transport and Optical Properties of Inhomogeneous Media. doi: 10.1016/j.physb.2003.08.015.

[40]

B. Schweizer and M. Urban, Effective Maxwell's equations in general periodic microstructures, Applicable Analysis, 97 (2017), 2210-2230.  doi: 10.1080/00036811.2017.1359563.

[41]

B. Schweizer, Resonance meets homogenization: Construction of meta-materials with astonishing properties, Jahresber. Dtsch. Math.-Ver., 119 (2017), 31-51.  doi: 10.1365/s13291-016-0153-2.

[42]

V. P. Smyshlyaev, Propagation and localization of elastic waves in highly anisotropic periodic composites via two-scale homogenization, Mech. Mater., 41 (2009), 434-447.  doi: 10.1016/j.mechmat.2009.01.009.

[43]

B. Verfürth, Heterogeneous Multiscale method for the Maxwell equations with high contrast, ESAIM Math. Model. Numer. Anal., 53 (2019), 35-61.  doi: 10.1051/m2an/2018064.

[44]

V. V. Zhikov, On an extension and an application of the two-scale convergence method, Sbornik Mathematics, 191 (2000), 973-1014.  doi: 10.1070/SM2000v191n07ABEH000491.

[45]

V. V. Zhikov, On spectrum gaps of some divergent elliptic operators with periodic coefficients, St Petersburg Math. J., 16 (2005), 773-790.  doi: 10.1090/S1061-0022-05-00878-2.

Figure 2.2.  The cube shows the periodicity cell $ Y $. The microstructures $ \Sigma_1 $, $ \Sigma_3 $, and $ \Sigma_4 $ are shown in dark grey. (A) The metal cylinder $ \Sigma_1 $. (B) The metal plate $ \Sigma_3 $. (C) The metal part $ \Sigma_4 $ is the complement of a cylinder
Figure 2.1.  Waveguide domain $ G $ with periodic scatterer $ \Sigma_{ \eta} $ contained in the middle part $ Q_M $ and incident wave from the right
Figure 5.1.  Metal cuboid $ \tilde \Sigma_1 $, the magnitude of $ \operatorname{Re}( \hat{H}) $ is plotted. Left: The $ H $-field is $ \operatorname{e}_3 $-polarized and the plot shows values in the plane $ x_3 = 0.5 $. The analysis of both, (PC) and (HC) yields: transmission is possible. Right: The $ H $-field is $ \operatorname{e}_2 $-polarized and the plot shows values in the plane $ x_2 = 0.545 $. Since the $ H $-field is not parallel to $ \operatorname{e}_3 $, the analysis of (PC) and (HC) predicts that no transmission is possible. Inlet in the middle: Microstructure in the unit cube
Figure 5.2.  Test of numerical schemes for the metal cuboid $ \tilde \Sigma_1 $. We consider an $ \operatorname{e}_3 $-polarized incoming $ H $-field and plot the solution in the plane $ x_3 = 0.5 $; the colors indicate the magnitude of the reference solution $ \operatorname{Re}(H^\eta) $ (left) and the zeroth order approximation $ \operatorname{Re}(H^0_{{\rm HMM}}) $ (right). Inlet in the center: Microsctructure in the unit cube with visualization plane in red
Figure 5.3.  Metal cuboid $ \tilde \Sigma_2 $. We study an $ \operatorname{e}_3 $-polarized incident $ H $-field and plot the magnitude of $ \operatorname{Re}( \hat{H}) $ (left) and $ \operatorname{Re}(H^\eta) $ (right) in the plane $ x_2 = 0.545 $. The analysis (PC) predicts transmission in this case, the analysis (HC) does not exclude transmission. Middle: Microstructure in the unit cube with visualization plane in red
Figure 5.4.  Metal plate $ \Sigma_3 $. The colors indicate the magnitude of $ \operatorname{Re}( \hat{H}) $ in the plane $ x_3 = 0.5 $. Left: The $ H $-field is $ \operatorname{e}_3 $-polarized. The analysis (PC) predicts transmission, the analysis (HC) cannot exclude transmission. Right: The $ H $-field is $ \operatorname{e}_2 $-polarized. The analysis (PC and HC) predicts that no transmission is possible
Figure 5.5.  Metal block with holes. Left: The structure $ \tilde \Sigma_4 $, we plot the magnitude of $ \operatorname{Re}(H^\eta) $ in the plane $ x_3 = 0.545 $ for $ \operatorname{e}_3 $-polarized incoming $ H $-field. The analysis (PC) predicts no transmission, the analysis (HC) cannot exclude transmission. Right: A geometry in which the cylinders $ \tilde \Sigma_4 $ are rotated in $ \operatorname{e}_3 $-direction. We plot the magnitude of $ \operatorname{Re}(H^\eta) $ in the plane $ x_3 = 0.5 $ for $ \operatorname{e}_3 $-polarized incoming $ H $-field. Small pictures show the microstructures in the unit cube and the visualization planes in red
Table 2.1.  Index sets $ \mathcal{N}_{\Sigma} $, $ \mathcal{L}_{\Sigma} $, and $ \mathcal{N}_{Y \setminus \overline{\Sigma}} $ for microstructures $ \Sigma_1 $ to $ \Sigma_4 $ of (2.6)–(2.9)
geometry metal cylinder $ \Sigma_1 $ metal cylinder $ \Sigma_2 $ metal plate $ \Sigma_3 $ air cylinder $ \Sigma_4 $
$ \mathcal{N}_{\Sigma} $ $ \{1, 2\} $ $ \{2, 3\} $ $ \{2\} $ $ \emptyset $
$ \mathcal{L}_{\Sigma} $ $ \{3\} $ $ \{1\} $ $ \{1, 3\} $ $ \{1, 2, 3\} $
$ \mathcal{N}_{Y \setminus \overline{\Sigma}} $ $ \emptyset $ $ \emptyset $ $ \{2\} $ $ \{2, 3\} $
geometry metal cylinder $ \Sigma_1 $ metal cylinder $ \Sigma_2 $ metal plate $ \Sigma_3 $ air cylinder $ \Sigma_4 $
$ \mathcal{N}_{\Sigma} $ $ \{1, 2\} $ $ \{2, 3\} $ $ \{2\} $ $ \emptyset $
$ \mathcal{L}_{\Sigma} $ $ \{3\} $ $ \{1\} $ $ \{1, 3\} $ $ \{1, 2, 3\} $
$ \mathcal{N}_{Y \setminus \overline{\Sigma}} $ $ \emptyset $ $ \emptyset $ $ \{2\} $ $ \{2, 3\} $
Table 3.1.  Overview of the transmission coefficients $ T $ when $ H $ is parallel to $ \operatorname{e}_3 $. We see, in particular, that $ T $ is vanishing for the structure $ \Sigma_4 $, but it is nonzero for the other micro-structures. The constant $ \gamma \in \mathbb{C} $ depends on the microstructure and on solutions to cell problems, and is defined in the subsequent sections, $ \alpha := | Y \setminus \Sigma| $ is the volume fraction of air, $ L > 0 $ is the width of the meta-material $ Q_M $. We use $ k_0 = \omega \sqrt{\varepsilon_0 \mu_0} $ and the numbers $ p_0 := \operatorname{e}^{i k_0 L} $, $ p_1 := p_0 \operatorname{e}^{ i \sqrt{\alpha \gamma} L} $, and $ p_2 := p_0 \operatorname{e}^{ i \sqrt{\gamma}L} $
microstructure $ \Sigma $ transmission coefficient $ T $
metal cylinder $ \Sigma_1 $ $ T =4 p_1\sqrt{\alpha\gamma} \Big[(\alpha + \gamma)(1-p_1^2) + 2 \sqrt{\alpha \gamma} (1+ p_1^2)\Big]^{-1} $
metal cylinder $ \Sigma_2 $ $ T = 4 p_2 \sqrt{\gamma} \Big[(1+ \gamma)(1- p_2^2) + 2 \sqrt{\gamma}(1+p_2^2) \Big]^{-1} $
metal plate $ \Sigma_3 $ $ T = 4p_0 \alpha \Big[(1+\alpha^2)(1-p_0^2) + 2 \alpha (1+ p_0^2)\Big]^{-1} $
air cylinder $ \Sigma_4 $ $ T =0 $
microstructure $ \Sigma $ transmission coefficient $ T $
metal cylinder $ \Sigma_1 $ $ T =4 p_1\sqrt{\alpha\gamma} \Big[(\alpha + \gamma)(1-p_1^2) + 2 \sqrt{\alpha \gamma} (1+ p_1^2)\Big]^{-1} $
metal cylinder $ \Sigma_2 $ $ T = 4 p_2 \sqrt{\gamma} \Big[(1+ \gamma)(1- p_2^2) + 2 \sqrt{\gamma}(1+p_2^2) \Big]^{-1} $
metal plate $ \Sigma_3 $ $ T = 4p_0 \alpha \Big[(1+\alpha^2)(1-p_0^2) + 2 \alpha (1+ p_0^2)\Big]^{-1} $
air cylinder $ \Sigma_4 $ $ T =0 $
Table 5.1.  Summary of analytical predictions of the transmission properties and references to numerical results. The first row provides the geometry. The second row indicates possible transmission polarizations (of $ H $) according to the theory of perfect conductors of Section 3.1. The third row indicates the possibility of transmission based on Section 3.2: We mention cases in which we cannot derive weak convergence to $ 0 $. An entry "-" indicates that no analytical result can be applied. The last row provides the reference to the visualization of the numerical calculation for high-contrast media
geometry metal cylinder $ \Sigma_1 $ metal cylinder $ \Sigma_2 $ metal plate $ \Sigma_3 $ air cyl. $ \Sigma_4 $
transmission (PC) $ \mathbf{e}_3 $-polarized $ \mathbf{e}_2 $ and $ \mathbf{e}_3 $-polarized $ \mathbf{e}_3 $-polarized no
nontriv. limit (HC) $ \mathbf{e}_3 $-polarized - $ \mathbf{e}_3 $-polarized -
numerical example Fig. 5.1 Fig. 5.3 Fig. 5.4 Fig. 5.5
geometry metal cylinder $ \Sigma_1 $ metal cylinder $ \Sigma_2 $ metal plate $ \Sigma_3 $ air cyl. $ \Sigma_4 $
transmission (PC) $ \mathbf{e}_3 $-polarized $ \mathbf{e}_2 $ and $ \mathbf{e}_3 $-polarized $ \mathbf{e}_3 $-polarized no
nontriv. limit (HC) $ \mathbf{e}_3 $-polarized - $ \mathbf{e}_3 $-polarized -
numerical example Fig. 5.1 Fig. 5.3 Fig. 5.4 Fig. 5.5
[1]

Agnes Lamacz, Ben Schweizer. Effective acoustic properties of a meta-material consisting of small Helmholtz resonators. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 815-835. doi: 10.3934/dcdss.2017041

[2]

Thierry Colin, Boniface Nkonga. Multiscale numerical method for nonlinear Maxwell equations. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 631-658. doi: 10.3934/dcdsb.2005.5.631

[3]

Jiann-Sheng Jiang, Chi-Kun Lin, Chi-Hua Liu. Homogenization of the Maxwell's system for conducting media. Discrete and Continuous Dynamical Systems - B, 2008, 10 (1) : 91-107. doi: 10.3934/dcdsb.2008.10.91

[4]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[5]

Hao Wang, Wei Yang, Yunqing Huang. An adaptive edge finite element method for the Maxwell's equations in metamaterials. Electronic Research Archive, 2020, 28 (2) : 961-976. doi: 10.3934/era.2020051

[6]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems and Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[7]

Dag Lukkassen, Annette Meidell, Peter Wall. Multiscale homogenization of monotone operators. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 711-727. doi: 10.3934/dcds.2008.22.711

[8]

W. Wei, H. M. Yin. Global solvability for a singular nonlinear Maxwell's equations. Communications on Pure and Applied Analysis, 2005, 4 (2) : 431-444. doi: 10.3934/cpaa.2005.4.431

[9]

Björn Birnir, Niklas Wellander. Homogenized Maxwell's equations; A model for ceramic varistors. Discrete and Continuous Dynamical Systems - B, 2006, 6 (2) : 257-272. doi: 10.3934/dcdsb.2006.6.257

[10]

Annalena Albicker, Roland Griesmaier. Monotonicity in inverse scattering for Maxwell's equations. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022032

[11]

Assyr Abdulle, Yun Bai, Gilles Vilmart. Reduced basis finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems. Discrete and Continuous Dynamical Systems - S, 2015, 8 (1) : 91-118. doi: 10.3934/dcdss.2015.8.91

[12]

Nils Svanstedt. Multiscale stochastic homogenization of monotone operators. Networks and Heterogeneous Media, 2007, 2 (1) : 181-192. doi: 10.3934/nhm.2007.2.181

[13]

Eric Chung, Yalchin Efendiev, Ke Shi, Shuai Ye. A multiscale model reduction method for nonlinear monotone elliptic equations in heterogeneous media. Networks and Heterogeneous Media, 2017, 12 (4) : 619-642. doi: 10.3934/nhm.2017025

[14]

Gang Bao, Bin Hu, Peijun Li, Jue Wang. Analysis of time-domain Maxwell's equations in biperiodic structures. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 259-286. doi: 10.3934/dcdsb.2019181

[15]

M. Eller. On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 473-481. doi: 10.3934/dcdss.2009.2.473

[16]

Oleg Yu. Imanuvilov, Masahiro Yamamoto. Calderón problem for Maxwell's equations in cylindrical domain. Inverse Problems and Imaging, 2014, 8 (4) : 1117-1137. doi: 10.3934/ipi.2014.8.1117

[17]

B. L. G. Jonsson. Wave splitting of Maxwell's equations with anisotropic heterogeneous constitutive relations. Inverse Problems and Imaging, 2009, 3 (3) : 405-452. doi: 10.3934/ipi.2009.3.405

[18]

Cleverson R. da Luz, Gustavo Alberto Perla Menzala. Uniform stabilization of anisotropic Maxwell's equations with boundary dissipation. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 547-558. doi: 10.3934/dcdss.2009.2.547

[19]

Andreas Kirsch. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Problems and Imaging, 2007, 1 (1) : 159-179. doi: 10.3934/ipi.2007.1.159

[20]

Dirk Pauly. On Maxwell's and Poincaré's constants. Discrete and Continuous Dynamical Systems - S, 2015, 8 (3) : 607-618. doi: 10.3934/dcdss.2015.8.607

2021 Impact Factor: 1.41

Metrics

  • PDF downloads (302)
  • HTML views (207)
  • Cited by (0)

[Back to Top]