March  2020, 15(1): 125-142. doi: 10.3934/nhm.2020006

A remark about the periodic homogenization of certain composite fibered media

1. 

Laboratoire Jacques-Louis Lions, Boite courrier 187, Sorbonne Université, 4 place Jussieu, 75252 Paris cedex 05, France

2. 

Institut de Mathématiques de Marseille (I2M), UMR 7373, Aix-Marseille Univ, CNRS, Centrale Marseille, CMI, 39 rue F. Joliot-Curie, 13453 Marseille cedex 13, France

* Corresponding author: Ali Sili

Received  May 2019 Revised  September 2019 Published  December 2019

We explain in this paper the similarity arising in the homogenization process of some composite fibered media with the problem of the reduction of dimension $ 3d-1d $. More precisely, we highlight the fact that when the homogenization process leads to a local reduction of dimension, studying the homogenization problem in the reference configuration domain of the composite amounts to the study of the corresponding reduction of dimension in the reference cell. We give two examples in the framework of the thermal conduction problem: the first one concerns the reduction of dimension in a thin parallelepiped of size $ \varepsilon $ containing another thinner parallelepiped of size $ r_ \varepsilon \ll \varepsilon $ playing a role of a "hole". As in the homogenization, the one-dimensional limit problem involves a "strange term". In addition both limit problems have the same structure. In the second example, the geometry is similar but now we assume a high contrast between the conductivity (of order $ 1 $) in the small parallelepiped of size $ r_ \varepsilon : = r \varepsilon $, for some fixed $ r $ ($ 0 < r < \frac{1}{2} $) and the conductivity (of order $ \varepsilon^2 $) in the big parallelepiped of size $ \varepsilon $. We prove that the limit problem is a nonlocal problem and that it has the same structure as the corresponding periodic homogenized problem.

Citation: François Murat, Ali Sili. A remark about the periodic homogenization of certain composite fibered media. Networks and Heterogeneous Media, 2020, 15 (1) : 125-142. doi: 10.3934/nhm.2020006
References:
[1]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Analysis, 23 (1992), 1482-1518.  doi: 10.1137/0523084.

[2]

T. ArbogastJ. Douglas and U. Hornung, Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Analysis, 21 (1990), 823-836.  doi: 10.1137/0521046.

[3]

M. Bellieud and G. Bouchitté, Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effects, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4), 26 (1998), 407-436. 

[4]

A. Boughammoura, Homogenization and correctors for composite media with coated and highly anisotropic fibers, Elect. J. Differential Equations, (2012), 27 pp.

[5]

A. BraidesM. Briane and J. Casado-Diaz, Homogenization of non-uniformly bounded periodic diffusion energies in dimension two, Nonlinearity, 22 (2009), 1459-1480.  doi: 10.1088/0951-7715/22/6/010.

[6]

A. BraidesV.-C. Piat and A. Piatnitski, A variational approach to double-porosity problems, Asympt. Analysis, 39 (2004), 281-308. 

[7]

D. Caillerie and B. Dinari, A perturbation problem with two small parameters in the framework of the heat conduction of a fiber reinforced body, Partial Differential Equations, Warsaw, 19 (1987), 59-78. 

[8]

A. Brillard & M. El Jarroudi, Asymptotic behaviour of a cylindrical elastic structure periodically reinforced along identical fibers, IMA J. Appl. Math., 66 (2001), 567-590.  doi: 10.1093/imamat/66.6.567.

[9]

J. Casado-Diaz, Two-scale convergence for nonlinear Dirichlet problems, Proceed. Royal. Soc. Edinburgh Sect. A, 130 (2000), 249-276.  doi: 10.1017/S0308210500000147.

[10]

K. D. Cherednichenko and V. P. Smyshlyaev & V. V. Zhikov, Nonlocal limits for composite media with highly anisotropic periodic fibers, Proceed. Royal. Soc. Edinburgh Sect. A, 136 (2006), 87-144.  doi: 10.1017/S0308210500004455.

[11]

D. Cioranescu & F. Murat, Un terme étrange venu d'ailleurs, In Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar, Vols Ⅱ end Ⅲ (ed. H. Brézis and J.-L. Lions). Research Notes in Mathematics, 60 (1982), 98–138 and 78–154, English translation: A strange term coming from nowhere, Topics in the mathematical modelling of composite materials, ed. by A. Cherkaev & R.V. Kohn, Progress in nonlinear Differential Equations and their Applications, 31 (1997), Birkhäuser, Boston, 44–93.

[12]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Analysis, 20 (1989), 608-623.  doi: 10.1137/0520043.

[13]

F. Murat and A. Sili, Problèmes monotones dans des cylindres de faible diamètre formés de matériaux hétérogènes, C.R. Acad. Sci. Paris Sér. I Math., 320 (1995), 1199-1204. 

[14]

J. Rauch and M. Taylor, Potential and scattering theory on wildly perturbed domains, Jour. Funct. Anal., 18 (1975), 27-59.  doi: 10.1016/0022-1236(75)90028-2.

[15]

A. Sili, Homogénéisation dans des cylindres minces, C.R. Acad. Sci. Paris Sér. I Math., 332 (2001), 777-782.  doi: 10.1016/S0764-4442(01)01902-4.

[16]

A. Sili, Homogenization of a nonlinear monotone problem in an anisotropic medium, Math. Models Methods Appl. Sci., 14 (2004), 329–353. doi: 10.1142/S0218202504003258.

[17]

L. Tartar, The General Theory of Homogenization: A Personalized Introduction, Lecture Notes of the Unione Matematica Italiana, 7, Springer-Verlag, Berlin, 2009.

show all references

References:
[1]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Analysis, 23 (1992), 1482-1518.  doi: 10.1137/0523084.

[2]

T. ArbogastJ. Douglas and U. Hornung, Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Analysis, 21 (1990), 823-836.  doi: 10.1137/0521046.

[3]

M. Bellieud and G. Bouchitté, Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effects, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4), 26 (1998), 407-436. 

[4]

A. Boughammoura, Homogenization and correctors for composite media with coated and highly anisotropic fibers, Elect. J. Differential Equations, (2012), 27 pp.

[5]

A. BraidesM. Briane and J. Casado-Diaz, Homogenization of non-uniformly bounded periodic diffusion energies in dimension two, Nonlinearity, 22 (2009), 1459-1480.  doi: 10.1088/0951-7715/22/6/010.

[6]

A. BraidesV.-C. Piat and A. Piatnitski, A variational approach to double-porosity problems, Asympt. Analysis, 39 (2004), 281-308. 

[7]

D. Caillerie and B. Dinari, A perturbation problem with two small parameters in the framework of the heat conduction of a fiber reinforced body, Partial Differential Equations, Warsaw, 19 (1987), 59-78. 

[8]

A. Brillard & M. El Jarroudi, Asymptotic behaviour of a cylindrical elastic structure periodically reinforced along identical fibers, IMA J. Appl. Math., 66 (2001), 567-590.  doi: 10.1093/imamat/66.6.567.

[9]

J. Casado-Diaz, Two-scale convergence for nonlinear Dirichlet problems, Proceed. Royal. Soc. Edinburgh Sect. A, 130 (2000), 249-276.  doi: 10.1017/S0308210500000147.

[10]

K. D. Cherednichenko and V. P. Smyshlyaev & V. V. Zhikov, Nonlocal limits for composite media with highly anisotropic periodic fibers, Proceed. Royal. Soc. Edinburgh Sect. A, 136 (2006), 87-144.  doi: 10.1017/S0308210500004455.

[11]

D. Cioranescu & F. Murat, Un terme étrange venu d'ailleurs, In Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar, Vols Ⅱ end Ⅲ (ed. H. Brézis and J.-L. Lions). Research Notes in Mathematics, 60 (1982), 98–138 and 78–154, English translation: A strange term coming from nowhere, Topics in the mathematical modelling of composite materials, ed. by A. Cherkaev & R.V. Kohn, Progress in nonlinear Differential Equations and their Applications, 31 (1997), Birkhäuser, Boston, 44–93.

[12]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Analysis, 20 (1989), 608-623.  doi: 10.1137/0520043.

[13]

F. Murat and A. Sili, Problèmes monotones dans des cylindres de faible diamètre formés de matériaux hétérogènes, C.R. Acad. Sci. Paris Sér. I Math., 320 (1995), 1199-1204. 

[14]

J. Rauch and M. Taylor, Potential and scattering theory on wildly perturbed domains, Jour. Funct. Anal., 18 (1975), 27-59.  doi: 10.1016/0022-1236(75)90028-2.

[15]

A. Sili, Homogénéisation dans des cylindres minces, C.R. Acad. Sci. Paris Sér. I Math., 332 (2001), 777-782.  doi: 10.1016/S0764-4442(01)01902-4.

[16]

A. Sili, Homogenization of a nonlinear monotone problem in an anisotropic medium, Math. Models Methods Appl. Sci., 14 (2004), 329–353. doi: 10.1142/S0218202504003258.

[17]

L. Tartar, The General Theory of Homogenization: A Personalized Introduction, Lecture Notes of the Unione Matematica Italiana, 7, Springer-Verlag, Berlin, 2009.

[1]

Tasnim Fatima, Ekeoma Ijioma, Toshiyuki Ogawa, Adrian Muntean. Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers. Networks and Heterogeneous Media, 2014, 9 (4) : 709-737. doi: 10.3934/nhm.2014.9.709

[2]

Fioralba Cakoni, Houssem Haddar, Isaac Harris. Homogenization of the transmission eigenvalue problem for periodic media and application to the inverse problem. Inverse Problems and Imaging, 2015, 9 (4) : 1025-1049. doi: 10.3934/ipi.2015.9.1025

[3]

Frédéric Legoll, William Minvielle. Variance reduction using antithetic variables for a nonlinear convex stochastic homogenization problem. Discrete and Continuous Dynamical Systems - S, 2015, 8 (1) : 1-27. doi: 10.3934/dcdss.2015.8.1

[4]

Hui-Ling Li, Heng-Ling Wang, Xiao-Liu Wang. A quasilinear parabolic problem with a source term and a nonlocal absorption. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1945-1956. doi: 10.3934/cpaa.2018092

[5]

Vsevolod Laptev. Deterministic homogenization for media with barriers. Discrete and Continuous Dynamical Systems - S, 2015, 8 (1) : 29-44. doi: 10.3934/dcdss.2015.8.29

[6]

Antonin Chambolle, Gilles Thouroude. Homogenization of interfacial energies and construction of plane-like minimizers in periodic media through a cell problem. Networks and Heterogeneous Media, 2009, 4 (1) : 127-152. doi: 10.3934/nhm.2009.4.127

[7]

Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure and Applied Analysis, 2021, 20 (2) : 533-545. doi: 10.3934/cpaa.2020279

[8]

Ning Zhang, Qiang Wu. Online learning for supervised dimension reduction. Mathematical Foundations of Computing, 2019, 2 (2) : 95-106. doi: 10.3934/mfc.2019008

[9]

Lyudmila Grigoryeva, Juan-Pablo Ortega. Dimension reduction in recurrent networks by canonicalization. Journal of Geometric Mechanics, 2021, 13 (4) : 647-677. doi: 10.3934/jgm.2021028

[10]

Giuseppina Autuori, Patrizia Pucci. Entire solutions of nonlocal elasticity models for composite materials. Discrete and Continuous Dynamical Systems - S, 2018, 11 (3) : 357-377. doi: 10.3934/dcdss.2018020

[11]

Yves Capdeboscq, Shaun Chen Yang Ong. Quantitative jacobian determinant bounds for the conductivity equation in high contrast composite media. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 3857-3887. doi: 10.3934/dcdsb.2020228

[12]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[13]

María Anguiano, Renata Bunoiu. Homogenization of Bingham flow in thin porous media. Networks and Heterogeneous Media, 2020, 15 (1) : 87-110. doi: 10.3934/nhm.2020004

[14]

Jiann-Sheng Jiang, Chi-Kun Lin, Chi-Hua Liu. Homogenization of the Maxwell's system for conducting media. Discrete and Continuous Dynamical Systems - B, 2008, 10 (1) : 91-107. doi: 10.3934/dcdsb.2008.10.91

[15]

Catherine Choquet, Mohammed Moumni, Mouhcine Tilioua. Homogenization of the Landau-Lifshitz-Gilbert equation in a contrasted composite medium. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 35-57. doi: 10.3934/dcdss.2018003

[16]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2777-2808. doi: 10.3934/dcds.2020385

[17]

Shiwen Niu, Hongmei Cheng, Rong Yuan. A free boundary problem of some modified Leslie-Gower predator-prey model with nonlocal diffusion term. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2189-2219. doi: 10.3934/dcdsb.2021129

[18]

Martin Kružík, Ulisse Stefanelli, Chiara Zanini. Quasistatic evolution of magnetoelastic plates via dimension reduction. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5999-6013. doi: 10.3934/dcds.2015.35.5999

[19]

Fanghua Lin, Xiaodong Yan. A type of homogenization problem. Discrete and Continuous Dynamical Systems, 2003, 9 (1) : 1-30. doi: 10.3934/dcds.2003.9.1

[20]

Boštjan Gabrovšek, Giovanni Molica Bisci, Dušan D. Repovš. On nonlocal Dirichlet problems with oscillating term. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022130

2021 Impact Factor: 1.41

Metrics

  • PDF downloads (270)
  • HTML views (191)
  • Cited by (0)

Other articles
by authors

[Back to Top]