March  2020, 15(1): 125-142. doi: 10.3934/nhm.2020006

A remark about the periodic homogenization of certain composite fibered media

1. 

Laboratoire Jacques-Louis Lions, Boite courrier 187, Sorbonne Université, 4 place Jussieu, 75252 Paris cedex 05, France

2. 

Institut de Mathématiques de Marseille (I2M), UMR 7373, Aix-Marseille Univ, CNRS, Centrale Marseille, CMI, 39 rue F. Joliot-Curie, 13453 Marseille cedex 13, France

* Corresponding author: Ali Sili

Received  May 2019 Revised  September 2019 Published  December 2019

We explain in this paper the similarity arising in the homogenization process of some composite fibered media with the problem of the reduction of dimension $ 3d-1d $. More precisely, we highlight the fact that when the homogenization process leads to a local reduction of dimension, studying the homogenization problem in the reference configuration domain of the composite amounts to the study of the corresponding reduction of dimension in the reference cell. We give two examples in the framework of the thermal conduction problem: the first one concerns the reduction of dimension in a thin parallelepiped of size $ \varepsilon $ containing another thinner parallelepiped of size $ r_ \varepsilon \ll \varepsilon $ playing a role of a "hole". As in the homogenization, the one-dimensional limit problem involves a "strange term". In addition both limit problems have the same structure. In the second example, the geometry is similar but now we assume a high contrast between the conductivity (of order $ 1 $) in the small parallelepiped of size $ r_ \varepsilon : = r \varepsilon $, for some fixed $ r $ ($ 0 < r < \frac{1}{2} $) and the conductivity (of order $ \varepsilon^2 $) in the big parallelepiped of size $ \varepsilon $. We prove that the limit problem is a nonlocal problem and that it has the same structure as the corresponding periodic homogenized problem.

Citation: François Murat, Ali Sili. A remark about the periodic homogenization of certain composite fibered media. Networks & Heterogeneous Media, 2020, 15 (1) : 125-142. doi: 10.3934/nhm.2020006
References:
[1]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Analysis, 23 (1992), 1482-1518.  doi: 10.1137/0523084.  Google Scholar

[2]

T. ArbogastJ. Douglas and U. Hornung, Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Analysis, 21 (1990), 823-836.  doi: 10.1137/0521046.  Google Scholar

[3]

M. Bellieud and G. Bouchitté, Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effects, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4), 26 (1998), 407-436.   Google Scholar

[4]

A. Boughammoura, Homogenization and correctors for composite media with coated and highly anisotropic fibers, Elect. J. Differential Equations, (2012), 27 pp.  Google Scholar

[5]

A. BraidesM. Briane and J. Casado-Diaz, Homogenization of non-uniformly bounded periodic diffusion energies in dimension two, Nonlinearity, 22 (2009), 1459-1480.  doi: 10.1088/0951-7715/22/6/010.  Google Scholar

[6]

A. BraidesV.-C. Piat and A. Piatnitski, A variational approach to double-porosity problems, Asympt. Analysis, 39 (2004), 281-308.   Google Scholar

[7]

D. Caillerie and B. Dinari, A perturbation problem with two small parameters in the framework of the heat conduction of a fiber reinforced body, Partial Differential Equations, Warsaw, 19 (1987), 59-78.   Google Scholar

[8]

A. Brillard & M. El Jarroudi, Asymptotic behaviour of a cylindrical elastic structure periodically reinforced along identical fibers, IMA J. Appl. Math., 66 (2001), 567-590.  doi: 10.1093/imamat/66.6.567.  Google Scholar

[9]

J. Casado-Diaz, Two-scale convergence for nonlinear Dirichlet problems, Proceed. Royal. Soc. Edinburgh Sect. A, 130 (2000), 249-276.  doi: 10.1017/S0308210500000147.  Google Scholar

[10]

K. D. Cherednichenko and V. P. Smyshlyaev & V. V. Zhikov, Nonlocal limits for composite media with highly anisotropic periodic fibers, Proceed. Royal. Soc. Edinburgh Sect. A, 136 (2006), 87-144.  doi: 10.1017/S0308210500004455.  Google Scholar

[11]

D. Cioranescu & F. Murat, Un terme étrange venu d'ailleurs, In Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar, Vols Ⅱ end Ⅲ (ed. H. Brézis and J.-L. Lions). Research Notes in Mathematics, 60 (1982), 98–138 and 78–154, English translation: A strange term coming from nowhere, Topics in the mathematical modelling of composite materials, ed. by A. Cherkaev & R.V. Kohn, Progress in nonlinear Differential Equations and their Applications, 31 (1997), Birkhäuser, Boston, 44–93.  Google Scholar

[12]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Analysis, 20 (1989), 608-623.  doi: 10.1137/0520043.  Google Scholar

[13]

F. Murat and A. Sili, Problèmes monotones dans des cylindres de faible diamètre formés de matériaux hétérogènes, C.R. Acad. Sci. Paris Sér. I Math., 320 (1995), 1199-1204.   Google Scholar

[14]

J. Rauch and M. Taylor, Potential and scattering theory on wildly perturbed domains, Jour. Funct. Anal., 18 (1975), 27-59.  doi: 10.1016/0022-1236(75)90028-2.  Google Scholar

[15]

A. Sili, Homogénéisation dans des cylindres minces, C.R. Acad. Sci. Paris Sér. I Math., 332 (2001), 777-782.  doi: 10.1016/S0764-4442(01)01902-4.  Google Scholar

[16]

A. Sili, Homogenization of a nonlinear monotone problem in an anisotropic medium, Math. Models Methods Appl. Sci., 14 (2004), 329–353. doi: 10.1142/S0218202504003258.  Google Scholar

[17]

L. Tartar, The General Theory of Homogenization: A Personalized Introduction, Lecture Notes of the Unione Matematica Italiana, 7, Springer-Verlag, Berlin, 2009. Google Scholar

show all references

References:
[1]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Analysis, 23 (1992), 1482-1518.  doi: 10.1137/0523084.  Google Scholar

[2]

T. ArbogastJ. Douglas and U. Hornung, Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Analysis, 21 (1990), 823-836.  doi: 10.1137/0521046.  Google Scholar

[3]

M. Bellieud and G. Bouchitté, Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effects, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4), 26 (1998), 407-436.   Google Scholar

[4]

A. Boughammoura, Homogenization and correctors for composite media with coated and highly anisotropic fibers, Elect. J. Differential Equations, (2012), 27 pp.  Google Scholar

[5]

A. BraidesM. Briane and J. Casado-Diaz, Homogenization of non-uniformly bounded periodic diffusion energies in dimension two, Nonlinearity, 22 (2009), 1459-1480.  doi: 10.1088/0951-7715/22/6/010.  Google Scholar

[6]

A. BraidesV.-C. Piat and A. Piatnitski, A variational approach to double-porosity problems, Asympt. Analysis, 39 (2004), 281-308.   Google Scholar

[7]

D. Caillerie and B. Dinari, A perturbation problem with two small parameters in the framework of the heat conduction of a fiber reinforced body, Partial Differential Equations, Warsaw, 19 (1987), 59-78.   Google Scholar

[8]

A. Brillard & M. El Jarroudi, Asymptotic behaviour of a cylindrical elastic structure periodically reinforced along identical fibers, IMA J. Appl. Math., 66 (2001), 567-590.  doi: 10.1093/imamat/66.6.567.  Google Scholar

[9]

J. Casado-Diaz, Two-scale convergence for nonlinear Dirichlet problems, Proceed. Royal. Soc. Edinburgh Sect. A, 130 (2000), 249-276.  doi: 10.1017/S0308210500000147.  Google Scholar

[10]

K. D. Cherednichenko and V. P. Smyshlyaev & V. V. Zhikov, Nonlocal limits for composite media with highly anisotropic periodic fibers, Proceed. Royal. Soc. Edinburgh Sect. A, 136 (2006), 87-144.  doi: 10.1017/S0308210500004455.  Google Scholar

[11]

D. Cioranescu & F. Murat, Un terme étrange venu d'ailleurs, In Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar, Vols Ⅱ end Ⅲ (ed. H. Brézis and J.-L. Lions). Research Notes in Mathematics, 60 (1982), 98–138 and 78–154, English translation: A strange term coming from nowhere, Topics in the mathematical modelling of composite materials, ed. by A. Cherkaev & R.V. Kohn, Progress in nonlinear Differential Equations and their Applications, 31 (1997), Birkhäuser, Boston, 44–93.  Google Scholar

[12]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Analysis, 20 (1989), 608-623.  doi: 10.1137/0520043.  Google Scholar

[13]

F. Murat and A. Sili, Problèmes monotones dans des cylindres de faible diamètre formés de matériaux hétérogènes, C.R. Acad. Sci. Paris Sér. I Math., 320 (1995), 1199-1204.   Google Scholar

[14]

J. Rauch and M. Taylor, Potential and scattering theory on wildly perturbed domains, Jour. Funct. Anal., 18 (1975), 27-59.  doi: 10.1016/0022-1236(75)90028-2.  Google Scholar

[15]

A. Sili, Homogénéisation dans des cylindres minces, C.R. Acad. Sci. Paris Sér. I Math., 332 (2001), 777-782.  doi: 10.1016/S0764-4442(01)01902-4.  Google Scholar

[16]

A. Sili, Homogenization of a nonlinear monotone problem in an anisotropic medium, Math. Models Methods Appl. Sci., 14 (2004), 329–353. doi: 10.1142/S0218202504003258.  Google Scholar

[17]

L. Tartar, The General Theory of Homogenization: A Personalized Introduction, Lecture Notes of the Unione Matematica Italiana, 7, Springer-Verlag, Berlin, 2009. Google Scholar

[1]

Tasnim Fatima, Ekeoma Ijioma, Toshiyuki Ogawa, Adrian Muntean. Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers. Networks & Heterogeneous Media, 2014, 9 (4) : 709-737. doi: 10.3934/nhm.2014.9.709

[2]

Fioralba Cakoni, Houssem Haddar, Isaac Harris. Homogenization of the transmission eigenvalue problem for periodic media and application to the inverse problem. Inverse Problems & Imaging, 2015, 9 (4) : 1025-1049. doi: 10.3934/ipi.2015.9.1025

[3]

Hui-Ling Li, Heng-Ling Wang, Xiao-Liu Wang. A quasilinear parabolic problem with a source term and a nonlocal absorption. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1945-1956. doi: 10.3934/cpaa.2018092

[4]

Frédéric Legoll, William Minvielle. Variance reduction using antithetic variables for a nonlinear convex stochastic homogenization problem. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 1-27. doi: 10.3934/dcdss.2015.8.1

[5]

Vsevolod Laptev. Deterministic homogenization for media with barriers. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 29-44. doi: 10.3934/dcdss.2015.8.29

[6]

Antonin Chambolle, Gilles Thouroude. Homogenization of interfacial energies and construction of plane-like minimizers in periodic media through a cell problem. Networks & Heterogeneous Media, 2009, 4 (1) : 127-152. doi: 10.3934/nhm.2009.4.127

[7]

Giuseppina Autuori, Patrizia Pucci. Entire solutions of nonlocal elasticity models for composite materials. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 357-377. doi: 10.3934/dcdss.2018020

[8]

Ning Zhang, Qiang Wu. Online learning for supervised dimension reduction. Mathematical Foundations of Computing, 2019, 2 (2) : 95-106. doi: 10.3934/mfc.2019008

[9]

Catherine Choquet, Mohammed Moumni, Mouhcine Tilioua. Homogenization of the Landau-Lifshitz-Gilbert equation in a contrasted composite medium. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 35-57. doi: 10.3934/dcdss.2018003

[10]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[11]

Jiann-Sheng Jiang, Chi-Kun Lin, Chi-Hua Liu. Homogenization of the Maxwell's system for conducting media. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 91-107. doi: 10.3934/dcdsb.2008.10.91

[12]

María Anguiano, Renata Bunoiu. Homogenization of Bingham flow in thin porous media. Networks & Heterogeneous Media, 2020, 15 (1) : 87-110. doi: 10.3934/nhm.2020004

[13]

Martin Kružík, Ulisse Stefanelli, Chiara Zanini. Quasistatic evolution of magnetoelastic plates via dimension reduction. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5999-6013. doi: 10.3934/dcds.2015.35.5999

[14]

Fanghua Lin, Xiaodong Yan. A type of homogenization problem. Discrete & Continuous Dynamical Systems - A, 2003, 9 (1) : 1-30. doi: 10.3934/dcds.2003.9.1

[15]

Eric Chung, Yalchin Efendiev, Ke Shi, Shuai Ye. A multiscale model reduction method for nonlinear monotone elliptic equations in heterogeneous media. Networks & Heterogeneous Media, 2017, 12 (4) : 619-642. doi: 10.3934/nhm.2017025

[16]

Guillaume Bal. Homogenization in random media and effective medium theory for high frequency waves. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 473-492. doi: 10.3934/dcdsb.2007.8.473

[17]

Haibo Cui, Haiyan Yin. Stability of the composite wave for the inflow problem on the micropolar fluid model. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1265-1292. doi: 10.3934/cpaa.2017062

[18]

Giovanni Cupini, Eugenio Vecchi. Faber-Krahn and Lieb-type inequalities for the composite membrane problem. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2679-2691. doi: 10.3934/cpaa.2019119

[19]

Nikolai Dokuchaev. Dimension reduction and Mutual Fund Theorem in maximin setting for bond market. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1039-1053. doi: 10.3934/dcdsb.2011.16.1039

[20]

Florian Méhats, Christof Sparber. Dimension reduction for rotating Bose-Einstein condensates with anisotropic confinement. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5097-5118. doi: 10.3934/dcds.2016021

2018 Impact Factor: 0.871

Article outline

[Back to Top]