• Previous Article
    A new mixed finite element method for the n-dimensional Boussinesq problem with temperature-dependent viscosity
  • NHM Home
  • This Issue
  • Next Article
    Convexity and starshapedness of feasible sets in stationary flow networks
June  2020, 15(2): 197-213. doi: 10.3934/nhm.2020009

Vanishing viscosity on a star-shaped graph under general transmission conditions at the node

1. 

Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Via E. Orabona 4, 70125 Bari, Italy

2. 

Laboratoire de Mathématiques CNRS UMR6623, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France

* Corresponding author: Giuseppe Maria Coclite

Received  May 2019 Revised  November 2019

In this paper we consider a family of scalar conservation laws defined on an oriented star shaped graph and we study their vanishing viscosity approximations subject to general matching conditions at the node. In particular, we prove the existence of converging subsequence and we show that the limit is a weak solution of the original problem.

Citation: Giuseppe Maria Coclite, Carlotta Donadello. Vanishing viscosity on a star-shaped graph under general transmission conditions at the node. Networks & Heterogeneous Media, 2020, 15 (2) : 197-213. doi: 10.3934/nhm.2020009
References:
[1]

Ad imurthiS. Mishra and G. D. V. Gowda, Optimal entropy solutions for conservation laws with discontinuous flux-functions, J. Hyperbolic Differ. Equ., 2 (2005), 783-837.  doi: 10.1142/S0219891605000622.  Google Scholar

[2]

B. Andreianov and C. Cancès, On interface transmission conditions for conservation laws with discontinuous flux of general shape, J. Hyperbolic Differ. Equ., 12 (2015), 343-384.  doi: 10.1142/S0219891615500101.  Google Scholar

[3]

B. P. AndreianovG. M. Coclite and C. Donadello, Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network, Discrete Contin. Dyn. Syst., 37 (2017), 5913-5942.  doi: 10.3934/dcds.2017257.  Google Scholar

[4]

B. AndreianovK. H. Karlsen and N. H. Risebro, On vanishing viscosity approximation of conservation laws with discontinuous flux, Netw. Heterog. Media, 5 (2010), 617-633.  doi: 10.3934/nhm.2010.5.617.  Google Scholar

[5]

B. AndreianovK. H. Karlsen and N. H. Risebro, A theory of $L^1$-dissipative solvers for scalar conservation laws with discontinuous flux, Arch. Ration. Mech. Anal., 201 (2011), 27-86.  doi: 10.1007/s00205-010-0389-4.  Google Scholar

[6]

C. BardosA. Y. le Roux and J.-C. Nédélec, First order quasilinear equations with boundary conditions, Communications in Partial Differential Equations, 4 (1979), 1017-1034.  doi: 10.1080/03605307908820117.  Google Scholar

[7]

A. BressanS. ČanićM. GaravelloM. Herty and B. Piccoli, Flows on networks: Recent results and perspectives, EMS Surv. Math. Sci., 1 (2014), 47-111.  doi: 10.4171/EMSS/2.  Google Scholar

[8]

G. BrettiR. Natalini and M. Ribot, A hyperbolic model of chemotaxis on a network: A numerical study, ESAIM Math. Model. Numer. Anal., 48 (2014), 231-258.  doi: 10.1051/m2an/2013098.  Google Scholar

[9]

R. BürgerK. H. Karlsen and J. D. Towers, An Engquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections, SIAM J. Numer. Anal., 47 (2009), 1684-1712.  doi: 10.1137/07069314X.  Google Scholar

[10]

G. M. Coclite and M. Garavello, Vanishing viscosity for traffic on networks, SIAM J. Math. Anal., 42 (2010), 1761-1783.  doi: 10.1137/090771417.  Google Scholar

[11]

G. M. Coclite and L. di Ruvo, Vanishing viscosity for traffic on networks with degenerate diffusivity, Mediterr. J. Math., 16 (2019), Art. 110, 21 pp. doi: 10.1007/s00009-019-1391-1.  Google Scholar

[12]

R. M. Colombo and P. Goatin, A well posed conservation law with a variable unilateral constraint, J. Differential Equations, 234 (2007), 654-675.  doi: 10.1016/j.jde.2006.10.014.  Google Scholar

[13]

M. Garavello and B. Piccoli, Traffic Flow on Networks. Conservation Laws Models, AIMS Series on Applied Mathematics, 1. American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006.  Google Scholar

[14]

F. R. Guarguaglini and R. Natalini, Global smooth solutions for a hyperbolic chemotaxis model on a network, SIAM J. Math. Anal., 47 (2015), 4652-4671.  doi: 10.1137/140997099.  Google Scholar

[15]

E. F. Kaasschieter, Solving the buckley-leverett equation with gravity in a heterogeneous porous medium, Comput. Geosci., 3 (1999), 23-48.  doi: 10.1023/A:1011574824970.  Google Scholar

[16]

O. Kedem and A. Katchalsky, Thermodynamic analysis of permeability of biological membranes to non-electrolytes, Biochimica et Biophysica Acta, 27 (1958), 229-246.  doi: 10.1016/0006-3002(58)90330-5.  Google Scholar

[17]

F. Murat, L'injection du cȏne positif de $H^{-1}$ dans $W^{-1, \, q}$ est compacte pour tout $q <2$, J. Math. Pures Appl. (9), 60 (1981), 309-322.   Google Scholar

[18]

L. Tartar, Compensated compactness and applications to partial differential equations, Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. IV, Res. Notes in Math., Pitman, Boston, Mass.-London, 39 (1979), 136-212.   Google Scholar

show all references

References:
[1]

Ad imurthiS. Mishra and G. D. V. Gowda, Optimal entropy solutions for conservation laws with discontinuous flux-functions, J. Hyperbolic Differ. Equ., 2 (2005), 783-837.  doi: 10.1142/S0219891605000622.  Google Scholar

[2]

B. Andreianov and C. Cancès, On interface transmission conditions for conservation laws with discontinuous flux of general shape, J. Hyperbolic Differ. Equ., 12 (2015), 343-384.  doi: 10.1142/S0219891615500101.  Google Scholar

[3]

B. P. AndreianovG. M. Coclite and C. Donadello, Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network, Discrete Contin. Dyn. Syst., 37 (2017), 5913-5942.  doi: 10.3934/dcds.2017257.  Google Scholar

[4]

B. AndreianovK. H. Karlsen and N. H. Risebro, On vanishing viscosity approximation of conservation laws with discontinuous flux, Netw. Heterog. Media, 5 (2010), 617-633.  doi: 10.3934/nhm.2010.5.617.  Google Scholar

[5]

B. AndreianovK. H. Karlsen and N. H. Risebro, A theory of $L^1$-dissipative solvers for scalar conservation laws with discontinuous flux, Arch. Ration. Mech. Anal., 201 (2011), 27-86.  doi: 10.1007/s00205-010-0389-4.  Google Scholar

[6]

C. BardosA. Y. le Roux and J.-C. Nédélec, First order quasilinear equations with boundary conditions, Communications in Partial Differential Equations, 4 (1979), 1017-1034.  doi: 10.1080/03605307908820117.  Google Scholar

[7]

A. BressanS. ČanićM. GaravelloM. Herty and B. Piccoli, Flows on networks: Recent results and perspectives, EMS Surv. Math. Sci., 1 (2014), 47-111.  doi: 10.4171/EMSS/2.  Google Scholar

[8]

G. BrettiR. Natalini and M. Ribot, A hyperbolic model of chemotaxis on a network: A numerical study, ESAIM Math. Model. Numer. Anal., 48 (2014), 231-258.  doi: 10.1051/m2an/2013098.  Google Scholar

[9]

R. BürgerK. H. Karlsen and J. D. Towers, An Engquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections, SIAM J. Numer. Anal., 47 (2009), 1684-1712.  doi: 10.1137/07069314X.  Google Scholar

[10]

G. M. Coclite and M. Garavello, Vanishing viscosity for traffic on networks, SIAM J. Math. Anal., 42 (2010), 1761-1783.  doi: 10.1137/090771417.  Google Scholar

[11]

G. M. Coclite and L. di Ruvo, Vanishing viscosity for traffic on networks with degenerate diffusivity, Mediterr. J. Math., 16 (2019), Art. 110, 21 pp. doi: 10.1007/s00009-019-1391-1.  Google Scholar

[12]

R. M. Colombo and P. Goatin, A well posed conservation law with a variable unilateral constraint, J. Differential Equations, 234 (2007), 654-675.  doi: 10.1016/j.jde.2006.10.014.  Google Scholar

[13]

M. Garavello and B. Piccoli, Traffic Flow on Networks. Conservation Laws Models, AIMS Series on Applied Mathematics, 1. American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006.  Google Scholar

[14]

F. R. Guarguaglini and R. Natalini, Global smooth solutions for a hyperbolic chemotaxis model on a network, SIAM J. Math. Anal., 47 (2015), 4652-4671.  doi: 10.1137/140997099.  Google Scholar

[15]

E. F. Kaasschieter, Solving the buckley-leverett equation with gravity in a heterogeneous porous medium, Comput. Geosci., 3 (1999), 23-48.  doi: 10.1023/A:1011574824970.  Google Scholar

[16]

O. Kedem and A. Katchalsky, Thermodynamic analysis of permeability of biological membranes to non-electrolytes, Biochimica et Biophysica Acta, 27 (1958), 229-246.  doi: 10.1016/0006-3002(58)90330-5.  Google Scholar

[17]

F. Murat, L'injection du cȏne positif de $H^{-1}$ dans $W^{-1, \, q}$ est compacte pour tout $q <2$, J. Math. Pures Appl. (9), 60 (1981), 309-322.   Google Scholar

[18]

L. Tartar, Compensated compactness and applications to partial differential equations, Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. IV, Res. Notes in Math., Pitman, Boston, Mass.-London, 39 (1979), 136-212.   Google Scholar

Figure 1.  A junction consisting of $ m $ incoming and $ n $ outgoing edges
[1]

Boris Andreianov, Kenneth H. Karlsen, Nils H. Risebro. On vanishing viscosity approximation of conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2010, 5 (3) : 617-633. doi: 10.3934/nhm.2010.5.617

[2]

Boris P. Andreianov, Giuseppe Maria Coclite, Carlotta Donadello. Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5913-5942. doi: 10.3934/dcds.2017257

[3]

K. T. Joseph, Manas R. Sahoo. Vanishing viscosity approach to a system of conservation laws admitting $\delta''$ waves. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2091-2118. doi: 10.3934/cpaa.2013.12.2091

[4]

Mauro Garavello. A review of conservation laws on networks. Networks & Heterogeneous Media, 2010, 5 (3) : 565-581. doi: 10.3934/nhm.2010.5.565

[5]

Georges Bastin, B. Haut, Jean-Michel Coron, Brigitte d'Andréa-Novel. Lyapunov stability analysis of networks of scalar conservation laws. Networks & Heterogeneous Media, 2007, 2 (4) : 751-759. doi: 10.3934/nhm.2007.2.751

[6]

Giuseppe Maria Coclite, Lorenzo di Ruvo, Jan Ernest, Siddhartha Mishra. Convergence of vanishing capillarity approximations for scalar conservation laws with discontinuous fluxes. Networks & Heterogeneous Media, 2013, 8 (4) : 969-984. doi: 10.3934/nhm.2013.8.969

[7]

Frederic Rousset. The residual boundary conditions coming from the real vanishing viscosity method. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 605-625. doi: 10.3934/dcds.2002.8.606

[8]

Martin Gugat, Alexander Keimer, Günter Leugering, Zhiqiang Wang. Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks. Networks & Heterogeneous Media, 2015, 10 (4) : 749-785. doi: 10.3934/nhm.2015.10.749

[9]

Darko Mitrovic. New entropy conditions for scalar conservation laws with discontinuous flux. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1191-1210. doi: 10.3934/dcds.2011.30.1191

[10]

K. T. Joseph, Philippe G. LeFloch. Boundary layers in weak solutions of hyperbolic conservation laws II. self-similar vanishing diffusion limits. Communications on Pure & Applied Analysis, 2002, 1 (1) : 51-76. doi: 10.3934/cpaa.2002.1.51

[11]

Stefano Bianchini, Alberto Bressan. A case study in vanishing viscosity. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 449-476. doi: 10.3934/dcds.2001.7.449

[12]

Umberto Mosco, Maria Agostina Vivaldi. Vanishing viscosity for fractal sets. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1207-1235. doi: 10.3934/dcds.2010.28.1207

[13]

Mahendra Piraveenan, Mikhail Prokopenko, Albert Y. Zomaya. On congruity of nodes and assortative information content in complex networks. Networks & Heterogeneous Media, 2012, 7 (3) : 441-461. doi: 10.3934/nhm.2012.7.441

[14]

Avner Friedman. Conservation laws in mathematical biology. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3081-3097. doi: 10.3934/dcds.2012.32.3081

[15]

Len G. Margolin, Roy S. Baty. Conservation laws in discrete geometry. Journal of Geometric Mechanics, 2019, 11 (2) : 187-203. doi: 10.3934/jgm.2019010

[16]

Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2007, 2 (1) : 159-179. doi: 10.3934/nhm.2007.2.159

[17]

Hua Chen, Jian-Meng Li, Kelei Wang. On the vanishing viscosity limit of a chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2020, 40 (3) : 1963-1987. doi: 10.3934/dcds.2020101

[18]

Wen-Xiu Ma. Conservation laws by symmetries and adjoint symmetries. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 707-721. doi: 10.3934/dcdss.2018044

[19]

Tai-Ping Liu, Shih-Hsien Yu. Hyperbolic conservation laws and dynamic systems. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 143-145. doi: 10.3934/dcds.2000.6.143

[20]

Yanbo Hu, Wancheng Sheng. The Riemann problem of conservation laws in magnetogasdynamics. Communications on Pure & Applied Analysis, 2013, 12 (2) : 755-769. doi: 10.3934/cpaa.2013.12.755

2019 Impact Factor: 1.053

Article outline

Figures and Tables

[Back to Top]