We consider the Dirichlet problem for an elliptic multivalued maximal monotone operator $ {\mathcal A}_\varepsilon $ satisfying growth estimates of power type with a variable exponent. This exponent $ p_\varepsilon(x) $ and also the symbol of the operator $ {\mathcal A}_\varepsilon $ oscillate with a small period $ \varepsilon $ with respect to the space variable $ x $. We prove a homogenization result for this problem.
Citation: |
[1] |
M. Avci and A. Pankov, Multivalued elliptic operators with nonstandard growth, Adv. Nonlinear Anal., 7 (2018), 35-48.
doi: 10.1515/anona-2016-0043.![]() ![]() ![]() |
[2] |
P. Baroni, M. Colombo and G. Mingione, Regularity for general functionals with double phase, Calculus of Variations and Partial Differential Equations, 57 (2018), 1-48.
![]() |
[3] |
F. E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Nonlinear Functional Analysis, Amer. Math. Soc., Providence, R. I., (1976), 1–308.
![]() ![]() |
[4] |
A. Braides, Omogeneizzazione di integrali non coercivi, Ricerche Mat., 32 (1983), 347-368.
![]() |
[5] |
M. Bulíček, P. Gwiazda, M. Kalousek and A. Swierczewska-Gwiazda, Homogenization of nonlinear elliptic systems in nonreflexive Musielak-Orlicz spaces, Nonlinearity, 32 (2019), 1073-1110.
doi: 10.1088/1361-6544/aaf259.![]() ![]() ![]() |
[6] |
L. Carbone and C. Sbordone, Some properties of $\Gamma$-limits of integral functionals, Ann. Mat. Pura Appl., 122 (1979), 1-60.
doi: 10.1007/BF02411687.![]() ![]() ![]() |
[7] |
L. Carbone and C. Sbordone, Some properties of $\Gamma$-limits of integral functionals, Ann. Mat. Pura Appl., 122 (1979), 1-60.
doi: 10.1007/BF02411687.![]() ![]() ![]() |
[8] |
C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, Vol. 580. Springer-Verlag, Berlin-New York, 1977.
![]() ![]() |
[9] |
V. Chiadò Piat, G. Dal Maso and A. Defranceschi, $G$-convergence of monotone operators, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7 (1990), 123-160.
doi: 10.1016/S0294-1449(16)30298-0.![]() ![]() ![]() |
[10] |
V. Chiadò Piat and A. Defranceschi, Homogenization of monotone operators, Nonlinear Anal., 4 (1990), 717-732.
doi: 10.1016/0362-546X(90)90102-M.![]() ![]() ![]() |
[11] |
I. Chlebicka, A pocket guide to nonlinear differential equations in Musielak-Orlicz spaces, Nonlinear Analysis, 175 (2018), 1-27.
doi: 10.1016/j.na.2018.05.003.![]() ![]() ![]() |
[12] |
L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, 2017. Springer, Heidelberg, 2011.
doi: 10.1007/978-3-642-18363-8.![]() ![]() ![]() |
[13] |
D. E. Edmunds and J. Rákosník, Density of smooth functions in $W^{k, p}(\Omega)$, Proc. Roy. Soc. London Ser. A, 437 (1992), 229-236.
doi: 10.1098/rspa.1992.0059.![]() ![]() ![]() |
[14] |
I. Ekeland and R.Temam, Convex Analysis and Variational Problems, Studies in Mathematics and its Applications, Vol. 1. North-Holland Publishing Co., Amsterdam-Oxford, American Elsevier Publishing Co., Inc., New York, 1976.
![]() ![]() |
[15] |
J.-P. Gossez, Some approximation properties in Orlicz-Sobolev spaces, Studia Math., 74 (1982), 17-24.
doi: 10.4064/sm-74-1-17-24.![]() ![]() ![]() |
[16] |
V. V. Jikov, S. M. Kozlov and O. A. Oleǐnik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994.
doi: 10.1007/978-3-642-84659-5.![]() ![]() ![]() |
[17] |
O. Kováčik and J. Rákosníík, On spaces $L^{p(x)}$ and $W^{k, p(x)}$, Czechoslovak Mathematical Journal, 41 (1991), 592-618.
![]() |
[18] |
J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Gauthier-Villars, Paris, 1969.
![]() ![]() |
[19] |
P. Marcellini, Periodic solutions and homogenization of nonlinear variational problems, Ann. Mat. Pura Appl., 117 (1978), 139-152.
doi: 10.1007/BF02417888.![]() ![]() ![]() |
[20] |
P. Marcellini, Regularity for elliptic equations with general growth conditions, Journal of Differential Equations, 105 (1993), 296-333.
doi: 10.1006/jdeq.1993.1091.![]() ![]() ![]() |
[21] |
A. Pankov, Elliptic operators with nonstandard growth condition: Some results and open problems, Differential Equations, Mathematical Physics, and Applications: Selim Grigorievich Krein Centennial, Contemp. Math., Amer. Math. Soc., Providence, RI, 734 (2019), 277-292.
doi: 10.1090/conm/734/14777.![]() ![]() ![]() |
[22] |
D. Pascali and S. Sburlan, Nonlinear Mappings of Monotone Type, Martinus Nijhoff Publishers, The Hague, Sijthoff & Noordhoff International Publishers, Alphen aan den Rijn, 1978.
![]() ![]() |
[23] |
S. E. Pastukhova, Operator estimates in nonlinear problems of reiterated homogenization, Proceedings of the Steklov Institute of Mathematics, 261 (2008), 214-228.
doi: 10.1134/S0081543808020168.![]() ![]() ![]() |
[24] |
S. E. Pastukhova and D. A. Yakubovich, Galerkin approximations in problems with anisotropic $p(\cdot)$-Laplacian, Applicable Anal., 98 (2019), 345-361.
doi: 10.1080/00036811.2018.1451641.![]() ![]() ![]() |
[25] |
M. D. Surnachev and V. V. Zhikov, On existence and uniqueness classes for the Cauchy problem for parabolic equations of the $p$-Laplace type, Commun. Pure Appl. Anal., 12 (2013), 1783-1812.
doi: 10.3934/cpaa.2013.12.1783.![]() ![]() ![]() |
[26] |
V. V. Zhikov, Averaging of functionals of the calculus of vatiations and elasticity theory, Izvestiya Acad. Nauk of SSSR. Ser. Math., 50 (1986), 675–710,877.
![]() ![]() |
[27] |
V. V. Zhikov, Lavrentiev effect and the averaging of nonlinear variational problem, Differ. Equations, 27 (1991), 32-39.
![]() |
[28] |
V. V. Zhikov, On the density of smooth functions in Sobolev-Orlich spaces, J. Math. Sci., 132 (2006), 285-294.
doi: 10.1007/s10958-005-0497-0.![]() ![]() ![]() |
[29] |
V. V. Zhikov, On variational problems and nonlinear elliptic equations with nonstandard growth conditions, J. Math. Sci., 173 (2011), 463-570.
doi: 10.1007/s10958-011-0260-7.![]() ![]() ![]() |
[30] |
V. V. Zhikov, Homogenization of a Navier-Stokes type system for electrorheological fluid, Complex Variables and Elliptic Equations, 56 (2011), 545-558.
doi: 10.1080/17476933.2010.487214.![]() ![]() ![]() |
[31] |
V. V. Zhikov and S. E. Pastukhova, Improved integrability of the gradients of solutions of elliptic equations with variable nonlinearity exponent, Sb. Math., 199 (2008), 1751-1782.
doi: 10.1070/SM2008v199n12ABEH003980.![]() ![]() ![]() |
[32] |
V. V. Zhikov and S. E. Pastukhova, Homogenization of monotone operators under conditions of coercitivity and growth of variable order, Math. Notes, 90 (2011), 48-63.
doi: 10.1134/S0001434611070078.![]() ![]() ![]() |
[33] |
V. V. Zhikov and S. E. Pastukhova, On the $\Gamma$-convergence of oscillating integrands with nonstandard coercivity and growth conditions, Sb. Math., 205 (2014), 488-521.
doi: 10.1070/sm2014v205n04abeh004385.![]() ![]() ![]() |
[34] |
V. V. Zhikov and S. E. Pastukhova, $\Gamma$-convergence of integrands with nonstandard coercivity and growth conditions, J. Math. Sci., 196 (2014), 535-562.
doi: 10.1007/s10958-014-1674-9.![]() ![]() ![]() |
[35] |
V. V. Zhikov and S. E. Pastukhova, Homogenization and two-scale convergence in Sobolev space with oscillating exponent, St. Petersburg Mathematical Journal, 30 (2019), 231-251.
doi: 10.1090/spmj/1540.![]() ![]() ![]() |
[36] |
V. V. Zhikov and S. E. Pastukhova, Homogenization of degenerate elliptic equations, Sib. Math. J., 49 (2008), 80-101.
doi: 10.1007/s11202-008-0008-x.![]() ![]() ![]() |
[37] |
V. V. Zhikov, S. E. Pastukhova and S. V. Tikhomirova, On the homogenization of degenerate elliptic equations, Dokl. Akad. Nauk, 410 (2006), 587-591.
![]() ![]() |