[1]
|
M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295-314.
doi: 10.3934/nhm.2006.1.295.
|
[2]
|
M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41-46.
doi: 10.3934/nhm.2006.1.41.
|
[3]
|
F. Berthelin and F. Bouchut, Solution with finite energy to a BGK system relaxing to isentropic gas dynamics, Ann. Fac. Sci. Toulouse Math., 9 (2000), 605-630.
doi: 10.5802/afst.974.
|
[4]
|
F. Berthelin and F. Bouchut, Kinetic invariant domains and relaxation limit from a BGK model to isentropic gas dynamics, Asymtotic Anal., 31 (2002), 153-176.
|
[5]
|
F. Berthelin and F. Bouchut, Weak entropy boundary conditions for isentropic gas dynamics via kinetic relaxation, J. Differential Equations, 185 (2002), 251-270.
doi: 10.1006/jdeq.2001.4161.
|
[6]
|
F. Bouchut, Construction of BGK models with a family of kinetic entropies for a given system of conservation laws, J. Statist. Phys., 95 (1999), 113-170.
doi: 10.1023/A:1004525427365.
|
[7]
|
A. Bressan, The One-Dimensional Cauchy Problem, in Hyperbolic Systems of Conservation Laws, vol. 20 of Oxford Lecture Series in Mathematics and its Application, Oxford University Press, Oxford, 2000.
|
[8]
|
A. Bressan, S. Čanić, M. Garavello, M. Herty and B. Piccoli, Flows on networks: recent results and perspectives, EMS Surv. Math. Sci., 1 (2014), 47-111.
doi: 10.4171/EMSS/2.
|
[9]
|
G. M. Cocolite and M. Garavello, Vanishing viscosity for traffic on networks, SIAM J. Math. Anal., 42 (2010), 1761-1783.
doi: 10.1137/090771417.
|
[10]
|
R. M. Colombo and M. Garavello, A well posed Riemann problem for the $p$-system at a junction, Netw. Heterog. Media, 1 (2006), 495-511.
doi: 10.3934/nhm.2006.1.495.
|
[11]
|
R. M. Colombo and M. Garavello, On the Cauchy problem for the $p$-system at a junction, SIAM J. Math. Anal., 39 (2008), 1456-1471.
doi: 10.1137/060665841.
|
[12]
|
R. M. Colombo, M. Herty and V. Sachers, On $2\times2$ conservation laws at a junction, SIAM J. Math. Anal., 40 (2008), 605-622.
doi: 10.1137/070690298.
|
[13]
|
R. M. Colombo and H. Holden, Isentropic fluid dynamics in a curved pipe, Zeitschrift für angewandte Mathematik und Physik, 67 (2016), 1-10.
doi: 10.1007/s00033-016-0725-0.
|
[14]
|
R. M. Colombo and F. Marcellini, Coupling conditions for the 3x3 Euler system, Netw. Heterog. Media, 5 (2010), 675-690.
doi: 10.3934/nhm.2010.5.675.
|
[15]
|
R. M. Colombo and C. Mauri, Euler system for compressible fluids at a junction, J. Hyperbolic Differ. Equ., 5 (2008), 547-568.
doi: 10.1142/S0219891608001593.
|
[16]
|
C. M. Dafermos, The entropy rate admissibility criterion for solutions of hyperbolic conservation laws, J. Differential Equations, 14 (1973), 202-212.
doi: 10.1016/0022-0396(73)90043-0.
|
[17]
|
C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, vol. 325 of Grundlehren der mathematischen Wissenschaften, 3rd edition, Springer-Verlag Berlin Heidelberg, 2010.
doi: 10.1007/978-3-642-04048-1.
|
[18]
|
F. Dubois and P. LeFloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws, J. Differential Equations, 71 (1988), 93-122.
doi: 10.1016/0022-0396(88)90040-X.
|
[19]
|
M. Herty, Coupling conditions for networked systems of Euler equations, SIAM J. Sci. Comput., 30 (2008), 1596-1612.
doi: 10.1137/070688535.
|
[20]
|
M. Herty and M. Rascle, Coupling conditions for a class of second-order models for traffic flow, SIAM J. Math. Anal., 38 (2006), 595-616.
doi: 10.1137/05062617X.
|
[21]
|
H. Holden and N. H. Risebro, Riemann problems with a kink, SIAM J. Math. Anal., 30 (1999), 497-515.
doi: 10.1137/S0036141097327033.
|
[22]
|
Y. Holle, Kinetic relaxation to entropy based coupling conditions for isentropic flow on networks, J. Differential Equations, 269 (2020), 1192-1225.
doi: 10.1016/j.jde.2020.01.005.
|
[23]
|
P. T. Kan, M. M. Santos and Z. Xin, Initial-boundary value problem for conservation laws, Comm. Math. Phys., 186 (1997), 701-730.
doi: 10.1007/s002200050125.
|
[24]
|
J. Lang and P. Mindt, Entropy-preserving coupling conditions for one-dimensional Euler systems at junctions, Netw. Heterog. Media, 13 (2018), 177-190.
doi: 10.3934/nhm.2018008.
|
[25]
|
P.-L. Lions, B. Pertheme and E. Tadmor, Kinetic formulation of the isentropic gas dynamics and $p$-systems, Commun. Math. Phys., 163 (1994), 415-431.
doi: 10.1007/BF02102014.
|
[26]
|
T. P. Liu and J. A. Smoller, On the vacuum state for the isentropic gas dynamics equations, Adv. in Appl. Math., 1 (1980), 345-359.
doi: 10.1016/0196-8858(80)90016-0.
|
[27]
|
G. A. Reigstad, Existence and uniqueness of solutions to the generalized Riemann problem for isentropic flow, SIAM J. Appl. Math., 75 (2015), 679-702.
doi: 10.1137/140962759.
|
[28]
|
G. A. Reigstad, T. Flåtten, N. E. Haugen and T. Ytrehus, Coupling constants and the generalized Riemann problem for isothermal junction flow, J. Hyperbolic Differ. Equ., 12 (2015), 37-59.
doi: 10.1142/S0219891615500022.
|