\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

New coupling conditions for isentropic flow on networks

  • * Corresponding author: Yannick Holle

    * Corresponding author: Yannick Holle 
This work has been funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) projects 320021702/GRK2326 Energy, Entropy, and Dissipative Dynamics (EDDy) and HE5386/18, 19.
Abstract / Introduction Full Text(HTML) Figure(4) / Table(3) Related Papers Cited by
  • We introduce new coupling conditions for isentropic flow on networks based on an artificial density at the junction. The new coupling conditions can be derived from a kinetic model by imposing a condition on energy dissipation. Existence and uniqueness of solutions to the generalized Riemann and Cauchy problem are proven. The result for the generalized Riemann problem is globally in state space. Furthermore, non-increasing energy at the junction and a maximum principle are proven. A numerical example is given in which the new conditions are the only known conditions leading to the physically correct wave types. The approach generalizes to full gas dynamics.

    Mathematics Subject Classification: 35L65, 76N15, 82C40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 3.  The boundary Riemann set $ \mathcal V(\rho_*, 0) $

    Figure 1.  Construction of $ (\rho_\alpha, u_\alpha) $ and $ (\rho_\beta, u_\beta) $

    Figure 2.  The sets $ \mathcal A_* $, $ \mathcal B_* $, $ \mathcal C_* $ and $ \mathcal J_* $

    Figure 4.  Level sets for different coupling conditions

    Table 1.  Initial data

    pipeline $ \hat\rho_{k} $ $ \hat\rho_{k} \hat u_{k} $
    1 $ +1.0000 $ $ -1.0000 $
    2 $ +1.0000 $ $ +0.5000 $
    3 $ +1.0000 $ $ +0.5000 $
     | Show Table
    DownLoad: CSV

    Table 2.  Numerical results

    Equal density Equal momentum flux Equal stagnation enthalpy Equal artificial density
    pipeline $ \bar\rho_{k} $ $ \bar\rho_{k} \bar u_{k} $ $ \bar\rho_{k} $ $ \bar\rho_{k} \bar u_{k} $ $ \bar\rho_{k} $ $ \bar\rho_{k} \bar u_{k} $ $ \bar\rho_{k} $ $ \bar\rho_{k} \bar u_{k} $
    1 $ +1.0000 $ $ -1.0000 $ $ +0.8964 $ $ -1.1981 $ $ +0.8518 $ $ -1.2670 $ $ +1.1776 $ $ -0.5417 $
    2 $ +1.0000 $ $ +0.5000 $ $ +1.0266 $ $ +0.5991 $ $ +1.0356 $ $ +0.6335 $ $ +0.9346 $ $ +0.2708 $
    3 $ +1.0000 $ $ +0.5000 $ $ +1.0266 $ $ +0.5991 $ $ +1.0356 $ $ +0.6335 $ $ +0.9346 $ $ +0.2708 $
    Energy dissipation $ -7.5000\times 10^{-2} $ $ -1.725\times 10^{-2} $ $ \approx 0 $ $ -1.3852\times 10^{-1} $
     | Show Table
    DownLoad: CSV

    Table 3.  Wave types

    pipeline Equal density Equal momentum flux Equal stagnation enthalpy Equal artificial density
    1 no waves rarefaction wave rarefaction wave shock
    2 no waves shock shock rarefaction wave
    3 no waves shock shock rarefaction wave
     | Show Table
    DownLoad: CSV
  • [1] M. K. BandaM. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295-314.  doi: 10.3934/nhm.2006.1.295.
    [2] M. K. BandaM. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41-46.  doi: 10.3934/nhm.2006.1.41.
    [3] F. Berthelin and F. Bouchut, Solution with finite energy to a BGK system relaxing to isentropic gas dynamics, Ann. Fac. Sci. Toulouse Math., 9 (2000), 605-630.  doi: 10.5802/afst.974.
    [4] F. Berthelin and F. Bouchut, Kinetic invariant domains and relaxation limit from a BGK model to isentropic gas dynamics, Asymtotic Anal., 31 (2002), 153-176. 
    [5] F. Berthelin and F. Bouchut, Weak entropy boundary conditions for isentropic gas dynamics via kinetic relaxation, J. Differential Equations, 185 (2002), 251-270.  doi: 10.1006/jdeq.2001.4161.
    [6] F. Bouchut, Construction of BGK models with a family of kinetic entropies for a given system of conservation laws, J. Statist. Phys., 95 (1999), 113-170.  doi: 10.1023/A:1004525427365.
    [7] A. Bressan, The One-Dimensional Cauchy Problem, in Hyperbolic Systems of Conservation Laws, vol. 20 of Oxford Lecture Series in Mathematics and its Application, Oxford University Press, Oxford, 2000.
    [8] A. BressanS. ČanićM. GaravelloM. Herty and B. Piccoli, Flows on networks: recent results and perspectives, EMS Surv. Math. Sci., 1 (2014), 47-111.  doi: 10.4171/EMSS/2.
    [9] G. M. Cocolite and M. Garavello, Vanishing viscosity for traffic on networks, SIAM J. Math. Anal., 42 (2010), 1761-1783.  doi: 10.1137/090771417.
    [10] R. M. Colombo and M. Garavello, A well posed Riemann problem for the $p$-system at a junction, Netw. Heterog. Media, 1 (2006), 495-511.  doi: 10.3934/nhm.2006.1.495.
    [11] R. M. Colombo and M. Garavello, On the Cauchy problem for the $p$-system at a junction, SIAM J. Math. Anal., 39 (2008), 1456-1471.  doi: 10.1137/060665841.
    [12] R. M. ColomboM. Herty and V. Sachers, On $2\times2$ conservation laws at a junction, SIAM J. Math. Anal., 40 (2008), 605-622.  doi: 10.1137/070690298.
    [13] R. M. Colombo and H. Holden, Isentropic fluid dynamics in a curved pipe, Zeitschrift für angewandte Mathematik und Physik, 67 (2016), 1-10.  doi: 10.1007/s00033-016-0725-0.
    [14] R. M. Colombo and F. Marcellini, Coupling conditions for the 3x3 Euler system, Netw. Heterog. Media, 5 (2010), 675-690.  doi: 10.3934/nhm.2010.5.675.
    [15] R. M. Colombo and C. Mauri, Euler system for compressible fluids at a junction, J. Hyperbolic Differ. Equ., 5 (2008), 547-568.  doi: 10.1142/S0219891608001593.
    [16] C. M. Dafermos, The entropy rate admissibility criterion for solutions of hyperbolic conservation laws, J. Differential Equations, 14 (1973), 202-212.  doi: 10.1016/0022-0396(73)90043-0.
    [17] C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, vol. 325 of Grundlehren der mathematischen Wissenschaften, 3rd edition, Springer-Verlag Berlin Heidelberg, 2010. doi: 10.1007/978-3-642-04048-1.
    [18] F. Dubois and P. LeFloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws, J. Differential Equations, 71 (1988), 93-122.  doi: 10.1016/0022-0396(88)90040-X.
    [19] M. Herty, Coupling conditions for networked systems of Euler equations, SIAM J. Sci. Comput., 30 (2008), 1596-1612.  doi: 10.1137/070688535.
    [20] M. Herty and M. Rascle, Coupling conditions for a class of second-order models for traffic flow, SIAM J. Math. Anal., 38 (2006), 595-616.  doi: 10.1137/05062617X.
    [21] H. Holden and N. H. Risebro, Riemann problems with a kink, SIAM J. Math. Anal., 30 (1999), 497-515.  doi: 10.1137/S0036141097327033.
    [22] Y. Holle, Kinetic relaxation to entropy based coupling conditions for isentropic flow on networks, J. Differential Equations, 269 (2020), 1192-1225.  doi: 10.1016/j.jde.2020.01.005.
    [23] P. T. KanM. M. Santos and Z. Xin, Initial-boundary value problem for conservation laws, Comm. Math. Phys., 186 (1997), 701-730.  doi: 10.1007/s002200050125.
    [24] J. Lang and P. Mindt, Entropy-preserving coupling conditions for one-dimensional Euler systems at junctions, Netw. Heterog. Media, 13 (2018), 177-190.  doi: 10.3934/nhm.2018008.
    [25] P.-L. LionsB. Pertheme and E. Tadmor, Kinetic formulation of the isentropic gas dynamics and $p$-systems, Commun. Math. Phys., 163 (1994), 415-431.  doi: 10.1007/BF02102014.
    [26] T. P. Liu and J. A. Smoller, On the vacuum state for the isentropic gas dynamics equations, Adv. in Appl. Math., 1 (1980), 345-359.  doi: 10.1016/0196-8858(80)90016-0.
    [27] G. A. Reigstad, Existence and uniqueness of solutions to the generalized Riemann problem for isentropic flow, SIAM J. Appl. Math., 75 (2015), 679-702.  doi: 10.1137/140962759.
    [28] G. A. ReigstadT. FlåttenN. E. Haugen and T. Ytrehus, Coupling constants and the generalized Riemann problem for isothermal junction flow, J. Hyperbolic Differ. Equ., 12 (2015), 37-59.  doi: 10.1142/S0219891615500022.
  • 加载中

Figures(4)

Tables(3)

SHARE

Article Metrics

HTML views(2309) PDF downloads(307) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return