
-
Previous Article
Simultaneous observability of infinitely many strings and beams
- NHM Home
- This Issue
-
Next Article
Perturbation analysis of the effective conductivity of a periodic composite
New coupling conditions for isentropic flow on networks
1. | Institut für Mathematik, RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany |
2. | Institut für Geometrie und Praktische Mathematik, RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany |
We introduce new coupling conditions for isentropic flow on networks based on an artificial density at the junction. The new coupling conditions can be derived from a kinetic model by imposing a condition on energy dissipation. Existence and uniqueness of solutions to the generalized Riemann and Cauchy problem are proven. The result for the generalized Riemann problem is globally in state space. Furthermore, non-increasing energy at the junction and a maximum principle are proven. A numerical example is given in which the new conditions are the only known conditions leading to the physically correct wave types. The approach generalizes to full gas dynamics.
References:
[1] |
M. K. Banda, M. Herty and A. Klar,
Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295-314.
doi: 10.3934/nhm.2006.1.295. |
[2] |
M. K. Banda, M. Herty and A. Klar,
Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41-46.
doi: 10.3934/nhm.2006.1.41. |
[3] |
F. Berthelin and F. Bouchut,
Solution with finite energy to a BGK system relaxing to isentropic gas dynamics, Ann. Fac. Sci. Toulouse Math., 9 (2000), 605-630.
doi: 10.5802/afst.974. |
[4] |
F. Berthelin and F. Bouchut,
Kinetic invariant domains and relaxation limit from a BGK model to isentropic gas dynamics, Asymtotic Anal., 31 (2002), 153-176.
|
[5] |
F. Berthelin and F. Bouchut,
Weak entropy boundary conditions for isentropic gas dynamics via kinetic relaxation, J. Differential Equations, 185 (2002), 251-270.
doi: 10.1006/jdeq.2001.4161. |
[6] |
F. Bouchut,
Construction of BGK models with a family of kinetic entropies for a given system of conservation laws, J. Statist. Phys., 95 (1999), 113-170.
doi: 10.1023/A:1004525427365. |
[7] |
A. Bressan, The One-Dimensional Cauchy Problem, in Hyperbolic Systems of Conservation Laws, vol. 20 of Oxford Lecture Series in Mathematics and its Application, Oxford University Press, Oxford, 2000. |
[8] |
A. Bressan, S. Čanić, M. Garavello, M. Herty and B. Piccoli,
Flows on networks: recent results and perspectives, EMS Surv. Math. Sci., 1 (2014), 47-111.
doi: 10.4171/EMSS/2. |
[9] |
G. M. Cocolite and M. Garavello,
Vanishing viscosity for traffic on networks, SIAM J. Math. Anal., 42 (2010), 1761-1783.
doi: 10.1137/090771417. |
[10] |
R. M. Colombo and M. Garavello,
A well posed Riemann problem for the $p$-system at a junction, Netw. Heterog. Media, 1 (2006), 495-511.
doi: 10.3934/nhm.2006.1.495. |
[11] |
R. M. Colombo and M. Garavello,
On the Cauchy problem for the $p$-system at a junction, SIAM J. Math. Anal., 39 (2008), 1456-1471.
doi: 10.1137/060665841. |
[12] |
R. M. Colombo, M. Herty and V. Sachers,
On $2\times2$ conservation laws at a junction, SIAM J. Math. Anal., 40 (2008), 605-622.
doi: 10.1137/070690298. |
[13] |
R. M. Colombo and H. Holden,
Isentropic fluid dynamics in a curved pipe, Zeitschrift für angewandte Mathematik und Physik, 67 (2016), 1-10.
doi: 10.1007/s00033-016-0725-0. |
[14] |
R. M. Colombo and F. Marcellini,
Coupling conditions for the 3x3 Euler system, Netw. Heterog. Media, 5 (2010), 675-690.
doi: 10.3934/nhm.2010.5.675. |
[15] |
R. M. Colombo and C. Mauri,
Euler system for compressible fluids at a junction, J. Hyperbolic Differ. Equ., 5 (2008), 547-568.
doi: 10.1142/S0219891608001593. |
[16] |
C. M. Dafermos,
The entropy rate admissibility criterion for solutions of hyperbolic conservation laws, J. Differential Equations, 14 (1973), 202-212.
doi: 10.1016/0022-0396(73)90043-0. |
[17] |
C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, vol. 325 of Grundlehren der mathematischen Wissenschaften, 3rd edition, Springer-Verlag Berlin Heidelberg, 2010.
doi: 10.1007/978-3-642-04048-1. |
[18] |
F. Dubois and P. LeFloch,
Boundary conditions for nonlinear hyperbolic systems of conservation laws, J. Differential Equations, 71 (1988), 93-122.
doi: 10.1016/0022-0396(88)90040-X. |
[19] |
M. Herty,
Coupling conditions for networked systems of Euler equations, SIAM J. Sci. Comput., 30 (2008), 1596-1612.
doi: 10.1137/070688535. |
[20] |
M. Herty and M. Rascle,
Coupling conditions for a class of second-order models for traffic flow, SIAM J. Math. Anal., 38 (2006), 595-616.
doi: 10.1137/05062617X. |
[21] |
H. Holden and N. H. Risebro,
Riemann problems with a kink, SIAM J. Math. Anal., 30 (1999), 497-515.
doi: 10.1137/S0036141097327033. |
[22] |
Y. Holle,
Kinetic relaxation to entropy based coupling conditions for isentropic flow on networks, J. Differential Equations, 269 (2020), 1192-1225.
doi: 10.1016/j.jde.2020.01.005. |
[23] |
P. T. Kan, M. M. Santos and Z. Xin,
Initial-boundary value problem for conservation laws, Comm. Math. Phys., 186 (1997), 701-730.
doi: 10.1007/s002200050125. |
[24] |
J. Lang and P. Mindt,
Entropy-preserving coupling conditions for one-dimensional Euler systems at junctions, Netw. Heterog. Media, 13 (2018), 177-190.
doi: 10.3934/nhm.2018008. |
[25] |
P.-L. Lions, B. Pertheme and E. Tadmor,
Kinetic formulation of the isentropic gas dynamics and $p$-systems, Commun. Math. Phys., 163 (1994), 415-431.
doi: 10.1007/BF02102014. |
[26] |
T. P. Liu and J. A. Smoller,
On the vacuum state for the isentropic gas dynamics equations, Adv. in Appl. Math., 1 (1980), 345-359.
doi: 10.1016/0196-8858(80)90016-0. |
[27] |
G. A. Reigstad,
Existence and uniqueness of solutions to the generalized Riemann problem for isentropic flow, SIAM J. Appl. Math., 75 (2015), 679-702.
doi: 10.1137/140962759. |
[28] |
G. A. Reigstad, T. Flåtten, N. E. Haugen and T. Ytrehus,
Coupling constants and the generalized Riemann problem for isothermal junction flow, J. Hyperbolic Differ. Equ., 12 (2015), 37-59.
doi: 10.1142/S0219891615500022. |
show all references
References:
[1] |
M. K. Banda, M. Herty and A. Klar,
Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295-314.
doi: 10.3934/nhm.2006.1.295. |
[2] |
M. K. Banda, M. Herty and A. Klar,
Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41-46.
doi: 10.3934/nhm.2006.1.41. |
[3] |
F. Berthelin and F. Bouchut,
Solution with finite energy to a BGK system relaxing to isentropic gas dynamics, Ann. Fac. Sci. Toulouse Math., 9 (2000), 605-630.
doi: 10.5802/afst.974. |
[4] |
F. Berthelin and F. Bouchut,
Kinetic invariant domains and relaxation limit from a BGK model to isentropic gas dynamics, Asymtotic Anal., 31 (2002), 153-176.
|
[5] |
F. Berthelin and F. Bouchut,
Weak entropy boundary conditions for isentropic gas dynamics via kinetic relaxation, J. Differential Equations, 185 (2002), 251-270.
doi: 10.1006/jdeq.2001.4161. |
[6] |
F. Bouchut,
Construction of BGK models with a family of kinetic entropies for a given system of conservation laws, J. Statist. Phys., 95 (1999), 113-170.
doi: 10.1023/A:1004525427365. |
[7] |
A. Bressan, The One-Dimensional Cauchy Problem, in Hyperbolic Systems of Conservation Laws, vol. 20 of Oxford Lecture Series in Mathematics and its Application, Oxford University Press, Oxford, 2000. |
[8] |
A. Bressan, S. Čanić, M. Garavello, M. Herty and B. Piccoli,
Flows on networks: recent results and perspectives, EMS Surv. Math. Sci., 1 (2014), 47-111.
doi: 10.4171/EMSS/2. |
[9] |
G. M. Cocolite and M. Garavello,
Vanishing viscosity for traffic on networks, SIAM J. Math. Anal., 42 (2010), 1761-1783.
doi: 10.1137/090771417. |
[10] |
R. M. Colombo and M. Garavello,
A well posed Riemann problem for the $p$-system at a junction, Netw. Heterog. Media, 1 (2006), 495-511.
doi: 10.3934/nhm.2006.1.495. |
[11] |
R. M. Colombo and M. Garavello,
On the Cauchy problem for the $p$-system at a junction, SIAM J. Math. Anal., 39 (2008), 1456-1471.
doi: 10.1137/060665841. |
[12] |
R. M. Colombo, M. Herty and V. Sachers,
On $2\times2$ conservation laws at a junction, SIAM J. Math. Anal., 40 (2008), 605-622.
doi: 10.1137/070690298. |
[13] |
R. M. Colombo and H. Holden,
Isentropic fluid dynamics in a curved pipe, Zeitschrift für angewandte Mathematik und Physik, 67 (2016), 1-10.
doi: 10.1007/s00033-016-0725-0. |
[14] |
R. M. Colombo and F. Marcellini,
Coupling conditions for the 3x3 Euler system, Netw. Heterog. Media, 5 (2010), 675-690.
doi: 10.3934/nhm.2010.5.675. |
[15] |
R. M. Colombo and C. Mauri,
Euler system for compressible fluids at a junction, J. Hyperbolic Differ. Equ., 5 (2008), 547-568.
doi: 10.1142/S0219891608001593. |
[16] |
C. M. Dafermos,
The entropy rate admissibility criterion for solutions of hyperbolic conservation laws, J. Differential Equations, 14 (1973), 202-212.
doi: 10.1016/0022-0396(73)90043-0. |
[17] |
C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, vol. 325 of Grundlehren der mathematischen Wissenschaften, 3rd edition, Springer-Verlag Berlin Heidelberg, 2010.
doi: 10.1007/978-3-642-04048-1. |
[18] |
F. Dubois and P. LeFloch,
Boundary conditions for nonlinear hyperbolic systems of conservation laws, J. Differential Equations, 71 (1988), 93-122.
doi: 10.1016/0022-0396(88)90040-X. |
[19] |
M. Herty,
Coupling conditions for networked systems of Euler equations, SIAM J. Sci. Comput., 30 (2008), 1596-1612.
doi: 10.1137/070688535. |
[20] |
M. Herty and M. Rascle,
Coupling conditions for a class of second-order models for traffic flow, SIAM J. Math. Anal., 38 (2006), 595-616.
doi: 10.1137/05062617X. |
[21] |
H. Holden and N. H. Risebro,
Riemann problems with a kink, SIAM J. Math. Anal., 30 (1999), 497-515.
doi: 10.1137/S0036141097327033. |
[22] |
Y. Holle,
Kinetic relaxation to entropy based coupling conditions for isentropic flow on networks, J. Differential Equations, 269 (2020), 1192-1225.
doi: 10.1016/j.jde.2020.01.005. |
[23] |
P. T. Kan, M. M. Santos and Z. Xin,
Initial-boundary value problem for conservation laws, Comm. Math. Phys., 186 (1997), 701-730.
doi: 10.1007/s002200050125. |
[24] |
J. Lang and P. Mindt,
Entropy-preserving coupling conditions for one-dimensional Euler systems at junctions, Netw. Heterog. Media, 13 (2018), 177-190.
doi: 10.3934/nhm.2018008. |
[25] |
P.-L. Lions, B. Pertheme and E. Tadmor,
Kinetic formulation of the isentropic gas dynamics and $p$-systems, Commun. Math. Phys., 163 (1994), 415-431.
doi: 10.1007/BF02102014. |
[26] |
T. P. Liu and J. A. Smoller,
On the vacuum state for the isentropic gas dynamics equations, Adv. in Appl. Math., 1 (1980), 345-359.
doi: 10.1016/0196-8858(80)90016-0. |
[27] |
G. A. Reigstad,
Existence and uniqueness of solutions to the generalized Riemann problem for isentropic flow, SIAM J. Appl. Math., 75 (2015), 679-702.
doi: 10.1137/140962759. |
[28] |
G. A. Reigstad, T. Flåtten, N. E. Haugen and T. Ytrehus,
Coupling constants and the generalized Riemann problem for isothermal junction flow, J. Hyperbolic Differ. Equ., 12 (2015), 37-59.
doi: 10.1142/S0219891615500022. |


pipeline | ||
1 | ||
2 | ||
3 |
pipeline | ||
1 | ||
2 | ||
3 |
Equal density | Equal momentum flux | Equal stagnation enthalpy | Equal artificial density | |||||
pipeline | ||||||||
1 | ||||||||
2 | ||||||||
3 | ||||||||
Energy dissipation |
Equal density | Equal momentum flux | Equal stagnation enthalpy | Equal artificial density | |||||
pipeline | ||||||||
1 | ||||||||
2 | ||||||||
3 | ||||||||
Energy dissipation |
pipeline | Equal density | Equal momentum flux | Equal stagnation enthalpy | Equal artificial density |
1 | no waves | rarefaction wave | rarefaction wave | shock |
2 | no waves | shock | shock | rarefaction wave |
3 | no waves | shock | shock | rarefaction wave |
pipeline | Equal density | Equal momentum flux | Equal stagnation enthalpy | Equal artificial density |
1 | no waves | rarefaction wave | rarefaction wave | shock |
2 | no waves | shock | shock | rarefaction wave |
3 | no waves | shock | shock | rarefaction wave |
[1] |
Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185 |
[2] |
Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301 |
[3] |
Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097 |
[4] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[5] |
Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041 |
[6] |
Pedro Aceves-Sanchez, Benjamin Aymard, Diane Peurichard, Pol Kennel, Anne Lorsignol, Franck Plouraboué, Louis Casteilla, Pierre Degond. A new model for the emergence of blood capillary networks. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2021001 |
[7] |
Yu Jin, Xiang-Qiang Zhao. The spatial dynamics of a Zebra mussel model in river environments. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020362 |
[8] |
Sabine Hittmeir, Laura Kanzler, Angelika Manhart, Christian Schmeiser. Kinetic modelling of colonies of myxobacteria. Kinetic & Related Models, 2021, 14 (1) : 1-24. doi: 10.3934/krm.2020046 |
[9] |
Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283 |
[10] |
Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020316 |
[11] |
Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020339 |
[12] |
Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020360 |
[13] |
Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263 |
[14] |
Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264 |
[15] |
Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021011 |
[16] |
Shujing Shi, Jicai Huang, Yang Kuang. Global dynamics in a tumor-immune model with an immune checkpoint inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1149-1170. doi: 10.3934/dcdsb.2020157 |
[17] |
Yancong Xu, Lijun Wei, Xiaoyu Jiang, Zirui Zhu. Complex dynamics of a SIRS epidemic model with the influence of hospital bed number. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021016 |
[18] |
Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319 |
[19] |
Bing Gao, Rui Gao. On fair entropy of the tent family. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021017 |
[20] |
Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020458 |
2019 Impact Factor: 1.053
Tools
Metrics
Other articles
by authors
[Back to Top]