December  2020, 15(4): 633-652. doi: 10.3934/nhm.2020017

Simultaneous observability of infinitely many strings and beams

1. 

College of Mathematics and Computational Science, Shenzhen University, Shenzhen 518060, People's Republic of China

2. 

Département de mathématique, Université de Strasbourg, 7 rue René Descartes, 67084 Strasbourg Cedex, France

3. 

Sapienza Università di Roma, Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Via A. Scarpa, 16, 00161, Roma, Italy

* Corresponding author: Paola Loreti

Received  June 2019 Revised  June 2020 Published  August 2020

Fund Project: The first author was supported by the Visiting Professor Programme, Sapienza Università di Roma

We investigate the simultaneous observability of infinite systems of vibrating strings or beams having a common endpoint where the observation is taking place. Our results are new even for finite systems because we allow the vibrations to take place in independent directions. Our main tool is a vectorial generalization of some classical theorems of Ingham, Beurling and Kahane in nonharmonic analysis.

Citation: Vilmos Komornik, Anna Chiara Lai, Paola Loreti. Simultaneous observability of infinitely many strings and beams. Networks & Heterogeneous Media, 2020, 15 (4) : 633-652. doi: 10.3934/nhm.2020017
References:
[1]

K. Ammari and M. Jellouli, Stabilization of star-shaped networks of strings,, Differential Integral Equations, 17 (2004), 1395-1410.   Google Scholar

[2]

K. Ammari and S. Farhat, Stability of a tree-shaped network of strings and beams,, Math. Methods Appl. Sci., 41 (2018), 7915-7935.  doi: 10.1002/mma.5255.  Google Scholar

[3]

K. Ammari and S. Nicaise, Stabilization of Elastic Systems by Collocated Feedback,, Lecture Notes in Mathematics, 2124. Springer, Cham, 2015. doi: 10.1007/978-3-319-10900-8.  Google Scholar

[4]

C. BaiocchiV. Komornik and P. Loreti, Ingham type theorems and applications to control theory, Bol. Un. Mat. Ital. B, 2 (1999), 33-63.   Google Scholar

[5]

C. BaiocchiV. Komornik and P. Loreti, Généralisation d'un théorème de Beurling et application à la théorie du contrôle, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000), 281-286.  doi: 10.1016/S0764-4442(00)00116-6.  Google Scholar

[6]

C. BaiocchiV. Komornik and P. Loreti, Ingham–Beurling type theorems with weakened gap conditions, Acta Math. Hungar., 97 (2002), 55-95.  doi: 10.1023/A:1020806811956.  Google Scholar

[7]

J. M. Ball and M. Slemrod, Nonharmonic Fourier series and the stabilization of distributed semilinear control systems,, Comm. Pure Appl. Math., 32 (1979), 555-587.  doi: 10.1002/cpa.3160320405.  Google Scholar

[8]

A. BarhoumiV. Komornik and M. Mehrenberger, A vectorial Ingham–Beurling theorem, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 53 (2010), 17-32.   Google Scholar

[9]

A. Beurling, Interpolation for an Interval in ${\mathbb R}^1$, in The Collected Works of Arne Beurling, Vol. 2. Harmonic Analysis (eds. L. Carleson, P. Malliavin, J. Neuberger and J. Wermer) Contemporary Mathematicians. Birkhäuser Boston, Inc., Boston, MA, 1989.  Google Scholar

[10] J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge Tracts in Mathematics and Mathematical Physics, No. 45. Cambridge University Press, New York, 1957.   Google Scholar
[11]

R. Dáger and E. Zuazua, Controllability of star-shaped networks of strings, C. R. Acad. Sci. Paris Sér. I Math., 332 (2001), 621-626.  doi: 10.1016/S0764-4442(01)01876-6.  Google Scholar

[12]

R. Dáger and E. Zuazua, Wave Propagation, Observation and Control in 1-d Flexible Multi-structures, , Springer Science & Business Media, Vol. 50, Springer-Verlag, Berlin, 2006. doi: 10.1007/3-540-37726-3.  Google Scholar

[13]

A. Haraux, Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire, J. Math. Pures Appl., 68 (1989), 457-465.   Google Scholar

[14]

A. E. Ingham, Some trigonometrical inequalities with applications in the theory of series, Math. Z., 41 (1936), 367-379.  doi: 10.1007/BF01180426.  Google Scholar

[15]

S. JaffardM. Tucsnak and E. Zuazua, On a theorem of Ingham. Dedicated to the memory of Richard J. Duffin, J. Fourier Anal. Appl., 3 (1997), 577-582.  doi: 10.1007/BF02648885.  Google Scholar

[16]

S. JaffardM. Tucsnak and E. Zuazua, Singular internal stabilization of the wave equation, J. Differential Equations, 145 (1998), 184-215.  doi: 10.1006/jdeq.1997.3385.  Google Scholar

[17]

J.-P. Kahane, Pseudo-périodicité et séries de Fourier lacunaires, Ann. Sci. de l'E.N.S., 79 (1962), 93-150.  doi: 10.24033/asens.1108.  Google Scholar

[18]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Collection RMA, vol. 36, Masson–John Wiley, Paris–Chicester, 1994.  Google Scholar

[19]

V. Komornik and P. Loreti, Fourier Series in Control Theory, Springer-Verlag, New York, 2005.  Google Scholar

[20]

V. Komornik and P. Loreti, Multiple-point internal observability of membranes and plates, Appl. Anal., 90 (2011), 1545-1555.  doi: 10.1080/00036811.2011.569497.  Google Scholar

[21]

J. E. Lagnese, G. Leugering and E. J. P. G. Schmidt, Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1994. doi: 10.1007/978-1-4612-0273-8.  Google Scholar

[22]

J.-L. Lions, Exact controllability, stabilizability, and perturbations for distributed systems, Siam Rev., 30 (1988), 1-68.  doi: 10.1137/1030001.  Google Scholar

[23]

J.-L. Lions, Contrôlabilité Exacte et Stabilisation de Systèmes Distribués I-II, Masson, Paris, 1988.  Google Scholar

[24]

P. Loreti, On some gap theorems, European Women in Mathematics–Marseille 2003, 39–45, CWI Tract, 135, Centrum Wisk. Inform., Amsterdam, 2005.  Google Scholar

[25]

M. Mehrenberger, Critical length for a Beurling type theorem, Bol. Un. Mat. Ital. B, 8 (2005), 251-258.   Google Scholar

[26]

E. Sikolya, Simultaneous observability of networks of beams and strings, Bol. Soc. Paran. Mat., 21 (2003), 31–41. doi: 10.5269/bspm.v21i1-2.7505.  Google Scholar

[27]

Q. Wu, The smallest Perron numbers,, Mathematics of Computation, 79 (2010), 2387-2394.  doi: 10.1090/S0025-5718-10-02345-8.  Google Scholar

show all references

References:
[1]

K. Ammari and M. Jellouli, Stabilization of star-shaped networks of strings,, Differential Integral Equations, 17 (2004), 1395-1410.   Google Scholar

[2]

K. Ammari and S. Farhat, Stability of a tree-shaped network of strings and beams,, Math. Methods Appl. Sci., 41 (2018), 7915-7935.  doi: 10.1002/mma.5255.  Google Scholar

[3]

K. Ammari and S. Nicaise, Stabilization of Elastic Systems by Collocated Feedback,, Lecture Notes in Mathematics, 2124. Springer, Cham, 2015. doi: 10.1007/978-3-319-10900-8.  Google Scholar

[4]

C. BaiocchiV. Komornik and P. Loreti, Ingham type theorems and applications to control theory, Bol. Un. Mat. Ital. B, 2 (1999), 33-63.   Google Scholar

[5]

C. BaiocchiV. Komornik and P. Loreti, Généralisation d'un théorème de Beurling et application à la théorie du contrôle, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000), 281-286.  doi: 10.1016/S0764-4442(00)00116-6.  Google Scholar

[6]

C. BaiocchiV. Komornik and P. Loreti, Ingham–Beurling type theorems with weakened gap conditions, Acta Math. Hungar., 97 (2002), 55-95.  doi: 10.1023/A:1020806811956.  Google Scholar

[7]

J. M. Ball and M. Slemrod, Nonharmonic Fourier series and the stabilization of distributed semilinear control systems,, Comm. Pure Appl. Math., 32 (1979), 555-587.  doi: 10.1002/cpa.3160320405.  Google Scholar

[8]

A. BarhoumiV. Komornik and M. Mehrenberger, A vectorial Ingham–Beurling theorem, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 53 (2010), 17-32.   Google Scholar

[9]

A. Beurling, Interpolation for an Interval in ${\mathbb R}^1$, in The Collected Works of Arne Beurling, Vol. 2. Harmonic Analysis (eds. L. Carleson, P. Malliavin, J. Neuberger and J. Wermer) Contemporary Mathematicians. Birkhäuser Boston, Inc., Boston, MA, 1989.  Google Scholar

[10] J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge Tracts in Mathematics and Mathematical Physics, No. 45. Cambridge University Press, New York, 1957.   Google Scholar
[11]

R. Dáger and E. Zuazua, Controllability of star-shaped networks of strings, C. R. Acad. Sci. Paris Sér. I Math., 332 (2001), 621-626.  doi: 10.1016/S0764-4442(01)01876-6.  Google Scholar

[12]

R. Dáger and E. Zuazua, Wave Propagation, Observation and Control in 1-d Flexible Multi-structures, , Springer Science & Business Media, Vol. 50, Springer-Verlag, Berlin, 2006. doi: 10.1007/3-540-37726-3.  Google Scholar

[13]

A. Haraux, Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire, J. Math. Pures Appl., 68 (1989), 457-465.   Google Scholar

[14]

A. E. Ingham, Some trigonometrical inequalities with applications in the theory of series, Math. Z., 41 (1936), 367-379.  doi: 10.1007/BF01180426.  Google Scholar

[15]

S. JaffardM. Tucsnak and E. Zuazua, On a theorem of Ingham. Dedicated to the memory of Richard J. Duffin, J. Fourier Anal. Appl., 3 (1997), 577-582.  doi: 10.1007/BF02648885.  Google Scholar

[16]

S. JaffardM. Tucsnak and E. Zuazua, Singular internal stabilization of the wave equation, J. Differential Equations, 145 (1998), 184-215.  doi: 10.1006/jdeq.1997.3385.  Google Scholar

[17]

J.-P. Kahane, Pseudo-périodicité et séries de Fourier lacunaires, Ann. Sci. de l'E.N.S., 79 (1962), 93-150.  doi: 10.24033/asens.1108.  Google Scholar

[18]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Collection RMA, vol. 36, Masson–John Wiley, Paris–Chicester, 1994.  Google Scholar

[19]

V. Komornik and P. Loreti, Fourier Series in Control Theory, Springer-Verlag, New York, 2005.  Google Scholar

[20]

V. Komornik and P. Loreti, Multiple-point internal observability of membranes and plates, Appl. Anal., 90 (2011), 1545-1555.  doi: 10.1080/00036811.2011.569497.  Google Scholar

[21]

J. E. Lagnese, G. Leugering and E. J. P. G. Schmidt, Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1994. doi: 10.1007/978-1-4612-0273-8.  Google Scholar

[22]

J.-L. Lions, Exact controllability, stabilizability, and perturbations for distributed systems, Siam Rev., 30 (1988), 1-68.  doi: 10.1137/1030001.  Google Scholar

[23]

J.-L. Lions, Contrôlabilité Exacte et Stabilisation de Systèmes Distribués I-II, Masson, Paris, 1988.  Google Scholar

[24]

P. Loreti, On some gap theorems, European Women in Mathematics–Marseille 2003, 39–45, CWI Tract, 135, Centrum Wisk. Inform., Amsterdam, 2005.  Google Scholar

[25]

M. Mehrenberger, Critical length for a Beurling type theorem, Bol. Un. Mat. Ital. B, 8 (2005), 251-258.   Google Scholar

[26]

E. Sikolya, Simultaneous observability of networks of beams and strings, Bol. Soc. Paran. Mat., 21 (2003), 31–41. doi: 10.5269/bspm.v21i1-2.7505.  Google Scholar

[27]

Q. Wu, The smallest Perron numbers,, Mathematics of Computation, 79 (2010), 2387-2394.  doi: 10.1090/S0025-5718-10-02345-8.  Google Scholar

Figure 1.  A system of three strings with vibration planes $ \sf{p_j} $ spanned by $ d_j: = (\ell_j,\phi_j,\theta_j) $ and $ v_j\perp d_j $, $ j = 1,2,3 $. In (i) $ \ell_1 = \ell_2 = \ell_3 = 1 $, the $ v_j $'s are pairwise orthogonal, and $ v_1 = d_3 $, $ v_2 = d_1 $, $ v_3 = d_2 $. We have $ T_0 = 2\max\left\lbrace {\ell_1,\ell_2,\ell_3}\right\rbrace = 2 $. In (ii), we have $ \ell_1 = \ell_3 = 1 $, $ \ell_2 = 2/(2+\sqrt{2}) $ and $ v_1 = d_3\perp d_1 = v_2 = v_3 $. Then $ T_0 = 2\max\left\lbrace {\ell_1+\ell_2,\ell_3}\right\rbrace\approx 3.1715 $. In the planar case (iii) we have $ \ell_1 = 1 $, $ \ell_2 = 2/(2+\sqrt{2}) $ and $ \ell_3 = 2/(4+\sqrt{2}) $, so that $ T_0 = 2\max\left\lbrace {\ell_1+\ell_2+\ell_3}\right\rbrace\approx 3.9103 $
[1]

Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054

[2]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[3]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[4]

Kateřina Škardová, Tomáš Oberhuber, Jaroslav Tintěra, Radomír Chabiniok. Signed-distance function based non-rigid registration of image series with varying image intensity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1145-1160. doi: 10.3934/dcdss.2020386

[5]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, Stock price fluctuation prediction method based on time series analysis. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 915-915. doi: 10.3934/dcdss.2019061

[6]

Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021018

[7]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[8]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[9]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[10]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[11]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[12]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[13]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[14]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[15]

Charlotte Rodriguez. Networks of geometrically exact beams: Well-posedness and stabilization. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021002

[16]

Erica Ipocoana, Andrea Zafferi. Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020289

[17]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

[18]

Hongyu Cheng, Shimin Wang. Response solutions to harmonic oscillators beyond multi–dimensional brjuno frequency. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020222

[19]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[20]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (71)
  • HTML views (187)
  • Cited by (0)

Other articles
by authors

[Back to Top]