# American Institute of Mathematical Sciences

doi: 10.3934/nhm.2020018

## Efficient numerical methods for gas network modeling and simulation

 1 School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, 201210, Shanghai, China 2 Computational Methods for Systems and Control Theory, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany 3 Faculty of Mathematics, Technische Universität Chemnitz, Reichenhainer Straße 41, 09126, Chemnitz, Germany

* Corresponding author: Yue Qiu

Received  August 2019 Revised  August 2020 Published  August 2020

Fund Project: This work is partially funded by the European Regional Development Fund (ERDF/EFRE: ZS/2016/04/78156) within the Center Dynamic Systems (CDS)

We study the modeling and simulation of gas pipeline networks, with a focus on fast numerical methods for the simulation of transient dynamics. The obtained mathematical model of the underlying network is represented by a system of nonlinear differential algebraic equations (DAEs). With our modeling approach, we reduce the number of algebraic constraints, which correspond to the $(2,2)$ block in our semi-explicit DAE model, to the order of junction nodes in the network, where a junction node couples at least three pipelines. We can furthermore ensure that the $(1, 1)$ block of all system matrices including the Jacobian is block lower triangular by using a specific ordering of the pipes of the network. We then exploit this structure to propose an efficient preconditioner for the fast simulation of the network. We test our numerical methods on benchmark problems of (well-)known gas networks and the numerical results show the efficiency of our methods.

Citation: Yue Qiu, Sara Grundel, Martin Stoll, Peter Benner. Efficient numerical methods for gas network modeling and simulation. Networks & Heterogeneous Media, doi: 10.3934/nhm.2020018
##### References:

show all references

##### References:
Separation of control volume $C_i$
A typical gas network
Smoothed network of Figure 2 with an ordering of the pipes
Computational diagram for gas network simulation
An illustrative network example of a DAG
Big benchmark network in [34]
Sparsity pattern of $J$ without and with DF ordering
Pipeline network in [16]
Comparison of FVM and FDM for a single pipe network
Medium size network
Comparison of FVM and FDM for a medium network
Mass flow at supply nodes for case 1
Mass flow at supply nodes for case 2
Mass flow for the pipe $31\rightarrow 37$
Nonlinear residual at the first and tenth time step
Number of IDR($4$) iterations at the first time step
Number of IDR($4$) iterations at the $10$-th time step
 Algorithm 1: Newton's method to solve (16) 1: Input: maximal number of Newton steps $n_{\max}$, stop tolerance $\varepsilon_0$, initial guess $x_0$ 2: $m=0$3: while $m\leq n_{\max}\& \ \|F(x)\|\geq \varepsilon_0$ do 4:     Compute the Jacobian matrix $D_F(x_m)=\frac{\partial}{\partial x}F|_{x=x_m}$ 5:     Solve $F(x_m) + D_F(x_m)(x-x_m)=0$ 6:     $m\gets m+1$, $x_m\gets x$7: end while 8: Output: solution $x\approx x_m$
 Algorithm 1: Newton's method to solve (16) 1: Input: maximal number of Newton steps $n_{\max}$, stop tolerance $\varepsilon_0$, initial guess $x_0$ 2: $m=0$3: while $m\leq n_{\max}\& \ \|F(x)\|\geq \varepsilon_0$ do 4:     Compute the Jacobian matrix $D_F(x_m)=\frac{\partial}{\partial x}F|_{x=x_m}$ 5:     Solve $F(x_m) + D_F(x_m)(x-x_m)=0$ 6:     $m\gets m+1$, $x_m\gets x$7: end while 8: Output: solution $x\approx x_m$
Computational time (seconds) for Schur complement $S^1$
 $h$ $\# D_F$ with DF without DF 20 2.01e+05 $8.12$ 8.75 10 3.97e+05 $17.84$ 19.14 5 7.91e+05 $38.44$ 41.75 2.5 1.58e+06 $81.42$ 87.77
 $h$ $\# D_F$ with DF without DF 20 2.01e+05 $8.12$ 8.75 10 3.97e+05 $17.84$ 19.14 5 7.91e+05 $38.44$ 41.75 2.5 1.58e+06 $81.42$ 87.77
Condition number of the Jacobian matrix $D_{F}$ from FVM and FDM, 1st time step, $h = 60$
 Newton iter. 1 2 3 4 FVM 1.56e+07 1.57e+07 1.57e+07 1.57e+07 FDM 1.24e+08 1.25e+08 1.25e+08 1.25e+08
 Newton iter. 1 2 3 4 FVM 1.56e+07 1.57e+07 1.57e+07 1.57e+07 FDM 1.24e+08 1.25e+08 1.25e+08 1.25e+08
Computational time for the 1st Newton iteration
 $h$ $\# D_F$ $t_{S^1}$ IDR($4$) backslash 40 1.03e+05 $3.85$ 0.25 0.13 20 2.01e+05 $8.12$ 0.52 0.36 10 3.97e+05 $17.84$ 1.06 1.18 5 7.91e+05 $38.44$ 2.13 1054.62 2.5 1.58e+06 $81.42$ 4.34 -
 $h$ $\# D_F$ $t_{S^1}$ IDR($4$) backslash 40 1.03e+05 $3.85$ 0.25 0.13 20 2.01e+05 $8.12$ 0.52 0.36 10 3.97e+05 $17.84$ 1.06 1.18 5 7.91e+05 $38.44$ 2.13 1054.62 2.5 1.58e+06 $81.42$ 4.34 -
 [1] Mapundi K. Banda, Michael Herty, Axel Klar. Coupling conditions for gas networks governed by the isothermal Euler equations. Networks & Heterogeneous Media, 2006, 1 (2) : 295-314. doi: 10.3934/nhm.2006.1.295 [2] M. D. König, Stefano Battiston, M. Napoletano, F. Schweitzer. On algebraic graph theory and the dynamics of innovation networks. Networks & Heterogeneous Media, 2008, 3 (2) : 201-219. doi: 10.3934/nhm.2008.3.201 [3] Michael Herty. Modeling, simulation and optimization of gas networks with compressors. Networks & Heterogeneous Media, 2007, 2 (1) : 81-97. doi: 10.3934/nhm.2007.2.81 [4] Mario Roy, Mariusz Urbański. Random graph directed Markov systems. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 261-298. doi: 10.3934/dcds.2011.30.261 [5] Mario Roy, Mariusz Urbański. Multifractal analysis for conformal graph directed Markov systems. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 627-650. doi: 10.3934/dcds.2009.25.627 [6] Loïs Boullu, Mostafa Adimy, Fabien Crauste, Laurent Pujo-Menjouet. Oscillations and asymptotic convergence for a delay differential equation modeling platelet production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2417-2442. doi: 10.3934/dcdsb.2018259 [7] David Mumford, Peter W. Michor. On Euler's equation and 'EPDiff'. Journal of Geometric Mechanics, 2013, 5 (3) : 319-344. doi: 10.3934/jgm.2013.5.319 [8] Mario Roy. A new variation of Bowen's formula for graph directed Markov systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2533-2551. doi: 10.3934/dcds.2012.32.2533 [9] Ciprian G. Gal, Maurizio Grasselli. The non-isothermal Allen-Cahn equation with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 1009-1040. doi: 10.3934/dcds.2008.22.1009 [10] Monika Eisenmann, Etienne Emmrich, Volker Mehrmann. Convergence of the backward Euler scheme for the operator-valued Riccati differential equation with semi-definite data. Evolution Equations & Control Theory, 2019, 8 (2) : 315-342. doi: 10.3934/eect.2019017 [11] Giovanni Bonfanti, Arrigo Cellina. The validity of the Euler-Lagrange equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 511-517. doi: 10.3934/dcds.2010.28.511 [12] Nataša Djurdjevac Conrad, Ralf Banisch, Christof Schütte. Modularity of directed networks: Cycle decomposition approach. Journal of Computational Dynamics, 2015, 2 (1) : 1-24. doi: 10.3934/jcd.2015.2.1 [13] Mapundi K. Banda, Michael Herty, Axel Klar. Gas flow in pipeline networks. Networks & Heterogeneous Media, 2006, 1 (1) : 41-56. doi: 10.3934/nhm.2006.1.41 [14] Martin Gugat, Falk M. Hante, Markus Hirsch-Dick, Günter Leugering. Stationary states in gas networks. Networks & Heterogeneous Media, 2015, 10 (2) : 295-320. doi: 10.3934/nhm.2015.10.295 [15] Jaime Angulo Pava, Nataliia Goloshchapova. On the orbital instability of excited states for the NLS equation with the δ-interaction on a star graph. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5039-5066. doi: 10.3934/dcds.2018221 [16] El Miloud Zaoui, Marc Laforest. Stability and modeling error for the Boltzmann equation. Kinetic & Related Models, 2014, 7 (2) : 401-414. doi: 10.3934/krm.2014.7.401 [17] Stéphane Brull, Pierre Charrier, Luc Mieussens. Gas-surface interaction and boundary conditions for the Boltzmann equation. Kinetic & Related Models, 2014, 7 (2) : 219-251. doi: 10.3934/krm.2014.7.219 [18] Raffaele Esposito, Mario Pulvirenti. Rigorous validity of the Boltzmann equation for a thin layer of a rarefied gas. Kinetic & Related Models, 2010, 3 (2) : 281-297. doi: 10.3934/krm.2010.3.281 [19] Karsten Matthies, George Stone, Florian Theil. The derivation of the linear Boltzmann equation from a Rayleigh gas particle model. Kinetic & Related Models, 2018, 11 (1) : 137-177. doi: 10.3934/krm.2018008 [20] Liviu I. Ignat, Ademir F. Pazoto. Large time behaviour for a nonlocal diffusion - convection equation related with gas dynamics. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3575-3589. doi: 10.3934/dcds.2014.34.3575

2019 Impact Factor: 1.053

## Tools

Article outline

Figures and Tables