December  2020, 15(4): 681-710. doi: 10.3934/nhm.2020019

The selection problem for some first-order stationary Mean-field games

1. 

King Abdullah University of Science and Technology (KAUST), CEMSE Division, Thuwal 23955-6900. Saudi Arabia

2. 

Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914, Japan

Received  August 2019 Revised  June 2020 Published  August 2020

Fund Project: D. Gomes was partially supported by King Abdullah University of Science and Technology (KAUST) baseline funds and KAUST OSR-CRG2017-3452. H. Mitake was partially supported by the JSPS grants: KAKENHI #19K03580, #19H00639, #17KK0093, #20H01816. K. Terai was supported by King Abdullah University of Science and Technology (KAUST) through the Visiting Student Research Program (VSRP) and by the JSPS grants: KAKENHI #20J10824

Here, we study the existence and the convergence of solutions for the vanishing discount MFG problem with a quadratic Hamiltonian. We give conditions under which the discounted problem has a unique classical solution and prove convergence of the vanishing-discount limit to a unique solution up to constants. Then, we establish refined asymptotics for the limit. When those conditions do not hold, the limit problem may not have a unique solution and its solutions may not be smooth, as we illustrate in an elementary example. Finally, we investigate the stability of regular weak solutions and address the selection problem. Using ideas from Aubry-Mather theory, we establish a selection criterion for the limit.

Citation: Diogo A. Gomes, Hiroyoshi Mitake, Kengo Terai. The selection problem for some first-order stationary Mean-field games. Networks & Heterogeneous Media, 2020, 15 (4) : 681-710. doi: 10.3934/nhm.2020019
References:
[1]

E. Al-AidarousE. AlzahraniH. Ishii and A. Younas, A convergence result for the ergodic problem for Hamilton-Jacobi equations with Neumann-type boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 225-242.  doi: 10.1017/S0308210515000517.  Google Scholar

[2]

F. CamilliI. Capuzzo-Dolcetta and D. Gomes, Error estimates for the approximation of the effective Hamiltonian, Appl. Math. Optim., 57 (2008), 30-57.  doi: 10.1007/s00245-007-9006-9.  Google Scholar

[3]

P. Cardaliaguet and P. J. Graber, Mean field games systems of first order, ESAIM Control Optim. Calc. Var., 21 (2015), 690-722.  doi: 10.1051/cocv/2014044.  Google Scholar

[4]

P. Cardaliaguet and A. Porretta, Long time behavior of the master equation in mean field game theory, Anal. PDE, 12 (2019), 1397-1453.  doi: 10.2140/apde.2019.12.1397.  Google Scholar

[5]

A. DaviniA. FathiR. Iturriaga and M. Zavidovique, Convergence of the solutions of the discounted Hamilton-Jacobi equation: Convergence of the discounted solutions, Invent. Math., 206 (2016), 29-55.  doi: 10.1007/s00222-016-0648-6.  Google Scholar

[6] J. Dieudonné, Foundations of Modern Analysis, Enlarged and Corrected Printing, Pure and Applied Mathematics, 10-I, Academic Press, New York-London, 1969.   Google Scholar
[7]

D. EvangelistaR. FerreiraD. GomesL. Nurbekyan and V. Voskanyan, First-order, stationary mean-field games with congestion, Nonlinear Analysis, 173 (2018), 37-74.  doi: 10.1016/j.na.2018.03.011.  Google Scholar

[8]

D. Evangelista and D. Gomes, On the existence of solutions for stationary mean-field games with congestion, J. Dyn. Diff. Equ., (2016), 1–24. doi: 10.1007/s10884-017-9615-1.  Google Scholar

[9]

L. C. Evans, Some new PDE methods for weak KAM theory, Calculus of Variations and Partial Differential Equations, 17 (2003), 159-177.  doi: 10.1007/s00526-002-0164-y.  Google Scholar

[10]

L. C. Evans and D. Gomes, Effective Hamiltonians and averaging for Hamiltonian dynamics. I, Arch. Ration. Mech. Anal., 157 (2001), 1-33.  doi: 10.1007/PL00004236.  Google Scholar

[11]

L. C. Evans and D. Gomes, Effective Hamiltonians and averaging for Hamiltonian dynamics II, Arch. Ration. Mech. Anal., 161 (2002), 271-305.  doi: 10.1007/s002050100181.  Google Scholar

[12]

A. Fathi, Solutions KAM faibles conjuguées et barrières de Peierls, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 649-652.  doi: 10.1016/S0764-4442(97)84777-5.  Google Scholar

[13]

A. Fathi, Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens, C. R. Acad. Sci. Paris Sér. I Math., 324 (1997), 1043-1046.  doi: 10.1016/S0764-4442(97)87883-4.  Google Scholar

[14]

A. Fathi, Orbite hétéroclines et ensemble de Peierls, C. R. Acad. Sci. Paris Sér. I Math., 326 (1998), 1213-1216.  doi: 10.1016/S0764-4442(98)80230-9.  Google Scholar

[15]

A. Fathi, Sur la convergence du semi-groupe de Lax-Oleinik, C. R. Acad. Sci. Paris Sér. I Math., 327 (1998), 267-270.  doi: 10.1016/S0764-4442(98)80144-4.  Google Scholar

[16]

R. Ferreira and D. Gomes, Existence of weak solutions to stationary mean-field games through variational inequalities, SIAM J. Math. Anal., 50 (2018), 5969-6006.  doi: 10.1137/16M1106705.  Google Scholar

[17]

R. Ferreira, D. Gomes and T. Tada, Existence of weak solutions to first-order stationary mean-field games with Dirichlet conditions, To appear in Proc. Amer. Math. Society, 2018. doi: 10.1090/proc/14475.  Google Scholar

[18]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001.  Google Scholar

[19]

D. Gomes, Generalized Mather problem and selection principles for viscosity solutions and Mather measures, Adv. Calc. Var., 1 (2008), 291-307.  doi: 10.1515/ACV.2008.012.  Google Scholar

[20]

D. Gomes and H. Mitake, Existence for stationary mean-field games with congestion and quadratic Hamiltonians, NoDEA Nonlinear Differential Equations Appl., 22 (2015), 1897-1910.  doi: 10.1007/s00030-015-0349-7.  Google Scholar

[21]

D. GomesH. Mitake and H. Tran, The selection problem for discounted Hamilton-Jacobi equations: Some non-convex cases, J. Math. Soc. Japan, 70 (2018), 345-364.  doi: 10.2969/jmsj/07017534.  Google Scholar

[22]

D. Gomes, L. Nurbekyan and M. Prazeres, Explicit solutions of one-dimensional, first-order, stationary mean-field games with congestion, 2016 IEEE 55th Conference on Decision and Control, CDC 2016, (2016), 4534–4539. doi: 10.1007/s13235-017-0223-9.  Google Scholar

[23]

D. Gomes, L. Nurbekyan and M. Prazeres, One-dimensional stationary mean-field games with local coupling, Dyn. Games and Applications, (2017). doi: 10.1007/s13235-017-0223-9.  Google Scholar

[24]

D. GomesS. Patrizi and V. Voskanyan, On the existence of classical solutions for stationary extended mean field games, Nonlinear Anal., 99 (2014), 49-79.  doi: 10.1016/j.na.2013.12.016.  Google Scholar

[25]

D. Gomes and H. Sánchez Morgado, A stochastic Evans-Aronsson problem, Trans. Amer. Math. Soc., 366 (2014), 903-929.  doi: 10.1090/S0002-9947-2013-05936-3.  Google Scholar

[26]

H. IshiiH. Mitake and H. V. Tran, The vanishing discount problem and viscosity Mather measures. Part 1: The problem on a torus, J. Math. Pures Appl. (9), 108 (2017), 125-149.  doi: 10.1016/j.matpur.2016.10.013.  Google Scholar

[27]

H. IshiiH. Mitake and H. V. Tran, The vanishing discount problem and viscosity Mather measures. Part 2: Boundary value problems, J. Math. Pures Appl. (9), 108 (2017), 261-305.  doi: 10.1016/j.matpur.2016.11.002.  Google Scholar

[28]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire, C. R. Math. Acad. Sci. Paris, 343 (2006), 619-625.  doi: 10.1016/j.crma.2006.09.019.  Google Scholar

[29]

J.-M. Lasry and P.-L. Lions, Mean field games, Jpn. J. Math., 2 (2007), 229-260.  doi: 10.1007/s11537-007-0657-8.  Google Scholar

[30]

P.-L. Lions, Collège de France course on mean-field games, 2007-2011. Google Scholar

[31]

P.-L. Lions, G. Papanicolao and S. R. S. Varadhan, Homogeneization of Hamilton-Jacobi equations, Preliminary Version, (1988). Google Scholar

[32]

R. Mañé, On the minimizing measures of Lagrangian dynamical systems, Nonlinearity, 5 (1992), 623-638.  doi: 10.1088/0951-7715/5/3/001.  Google Scholar

[33]

J. Mather, Action minimizing invariant measure for positive definite Lagrangian systems, Math. Z, 207 (1991), 169-207.  doi: 10.1007/BF02571383.  Google Scholar

[34]

H. Mitake and H. Tran, Selection problems for a discount degenerate viscous Hamilton-Jacobi equation, Adv. Math., 306 (2017), 684-703.  doi: 10.1016/j.aim.2016.10.032.  Google Scholar

[35]

E. Pimentel and V. Voskanyan, Regularity for second-order stationary mean-field games, Indiana Univ. Math. J., 66 (2017), 1-22.  doi: 10.1512/iumj.2017.66.5944.  Google Scholar

show all references

References:
[1]

E. Al-AidarousE. AlzahraniH. Ishii and A. Younas, A convergence result for the ergodic problem for Hamilton-Jacobi equations with Neumann-type boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 225-242.  doi: 10.1017/S0308210515000517.  Google Scholar

[2]

F. CamilliI. Capuzzo-Dolcetta and D. Gomes, Error estimates for the approximation of the effective Hamiltonian, Appl. Math. Optim., 57 (2008), 30-57.  doi: 10.1007/s00245-007-9006-9.  Google Scholar

[3]

P. Cardaliaguet and P. J. Graber, Mean field games systems of first order, ESAIM Control Optim. Calc. Var., 21 (2015), 690-722.  doi: 10.1051/cocv/2014044.  Google Scholar

[4]

P. Cardaliaguet and A. Porretta, Long time behavior of the master equation in mean field game theory, Anal. PDE, 12 (2019), 1397-1453.  doi: 10.2140/apde.2019.12.1397.  Google Scholar

[5]

A. DaviniA. FathiR. Iturriaga and M. Zavidovique, Convergence of the solutions of the discounted Hamilton-Jacobi equation: Convergence of the discounted solutions, Invent. Math., 206 (2016), 29-55.  doi: 10.1007/s00222-016-0648-6.  Google Scholar

[6] J. Dieudonné, Foundations of Modern Analysis, Enlarged and Corrected Printing, Pure and Applied Mathematics, 10-I, Academic Press, New York-London, 1969.   Google Scholar
[7]

D. EvangelistaR. FerreiraD. GomesL. Nurbekyan and V. Voskanyan, First-order, stationary mean-field games with congestion, Nonlinear Analysis, 173 (2018), 37-74.  doi: 10.1016/j.na.2018.03.011.  Google Scholar

[8]

D. Evangelista and D. Gomes, On the existence of solutions for stationary mean-field games with congestion, J. Dyn. Diff. Equ., (2016), 1–24. doi: 10.1007/s10884-017-9615-1.  Google Scholar

[9]

L. C. Evans, Some new PDE methods for weak KAM theory, Calculus of Variations and Partial Differential Equations, 17 (2003), 159-177.  doi: 10.1007/s00526-002-0164-y.  Google Scholar

[10]

L. C. Evans and D. Gomes, Effective Hamiltonians and averaging for Hamiltonian dynamics. I, Arch. Ration. Mech. Anal., 157 (2001), 1-33.  doi: 10.1007/PL00004236.  Google Scholar

[11]

L. C. Evans and D. Gomes, Effective Hamiltonians and averaging for Hamiltonian dynamics II, Arch. Ration. Mech. Anal., 161 (2002), 271-305.  doi: 10.1007/s002050100181.  Google Scholar

[12]

A. Fathi, Solutions KAM faibles conjuguées et barrières de Peierls, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 649-652.  doi: 10.1016/S0764-4442(97)84777-5.  Google Scholar

[13]

A. Fathi, Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens, C. R. Acad. Sci. Paris Sér. I Math., 324 (1997), 1043-1046.  doi: 10.1016/S0764-4442(97)87883-4.  Google Scholar

[14]

A. Fathi, Orbite hétéroclines et ensemble de Peierls, C. R. Acad. Sci. Paris Sér. I Math., 326 (1998), 1213-1216.  doi: 10.1016/S0764-4442(98)80230-9.  Google Scholar

[15]

A. Fathi, Sur la convergence du semi-groupe de Lax-Oleinik, C. R. Acad. Sci. Paris Sér. I Math., 327 (1998), 267-270.  doi: 10.1016/S0764-4442(98)80144-4.  Google Scholar

[16]

R. Ferreira and D. Gomes, Existence of weak solutions to stationary mean-field games through variational inequalities, SIAM J. Math. Anal., 50 (2018), 5969-6006.  doi: 10.1137/16M1106705.  Google Scholar

[17]

R. Ferreira, D. Gomes and T. Tada, Existence of weak solutions to first-order stationary mean-field games with Dirichlet conditions, To appear in Proc. Amer. Math. Society, 2018. doi: 10.1090/proc/14475.  Google Scholar

[18]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001.  Google Scholar

[19]

D. Gomes, Generalized Mather problem and selection principles for viscosity solutions and Mather measures, Adv. Calc. Var., 1 (2008), 291-307.  doi: 10.1515/ACV.2008.012.  Google Scholar

[20]

D. Gomes and H. Mitake, Existence for stationary mean-field games with congestion and quadratic Hamiltonians, NoDEA Nonlinear Differential Equations Appl., 22 (2015), 1897-1910.  doi: 10.1007/s00030-015-0349-7.  Google Scholar

[21]

D. GomesH. Mitake and H. Tran, The selection problem for discounted Hamilton-Jacobi equations: Some non-convex cases, J. Math. Soc. Japan, 70 (2018), 345-364.  doi: 10.2969/jmsj/07017534.  Google Scholar

[22]

D. Gomes, L. Nurbekyan and M. Prazeres, Explicit solutions of one-dimensional, first-order, stationary mean-field games with congestion, 2016 IEEE 55th Conference on Decision and Control, CDC 2016, (2016), 4534–4539. doi: 10.1007/s13235-017-0223-9.  Google Scholar

[23]

D. Gomes, L. Nurbekyan and M. Prazeres, One-dimensional stationary mean-field games with local coupling, Dyn. Games and Applications, (2017). doi: 10.1007/s13235-017-0223-9.  Google Scholar

[24]

D. GomesS. Patrizi and V. Voskanyan, On the existence of classical solutions for stationary extended mean field games, Nonlinear Anal., 99 (2014), 49-79.  doi: 10.1016/j.na.2013.12.016.  Google Scholar

[25]

D. Gomes and H. Sánchez Morgado, A stochastic Evans-Aronsson problem, Trans. Amer. Math. Soc., 366 (2014), 903-929.  doi: 10.1090/S0002-9947-2013-05936-3.  Google Scholar

[26]

H. IshiiH. Mitake and H. V. Tran, The vanishing discount problem and viscosity Mather measures. Part 1: The problem on a torus, J. Math. Pures Appl. (9), 108 (2017), 125-149.  doi: 10.1016/j.matpur.2016.10.013.  Google Scholar

[27]

H. IshiiH. Mitake and H. V. Tran, The vanishing discount problem and viscosity Mather measures. Part 2: Boundary value problems, J. Math. Pures Appl. (9), 108 (2017), 261-305.  doi: 10.1016/j.matpur.2016.11.002.  Google Scholar

[28]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire, C. R. Math. Acad. Sci. Paris, 343 (2006), 619-625.  doi: 10.1016/j.crma.2006.09.019.  Google Scholar

[29]

J.-M. Lasry and P.-L. Lions, Mean field games, Jpn. J. Math., 2 (2007), 229-260.  doi: 10.1007/s11537-007-0657-8.  Google Scholar

[30]

P.-L. Lions, Collège de France course on mean-field games, 2007-2011. Google Scholar

[31]

P.-L. Lions, G. Papanicolao and S. R. S. Varadhan, Homogeneization of Hamilton-Jacobi equations, Preliminary Version, (1988). Google Scholar

[32]

R. Mañé, On the minimizing measures of Lagrangian dynamical systems, Nonlinearity, 5 (1992), 623-638.  doi: 10.1088/0951-7715/5/3/001.  Google Scholar

[33]

J. Mather, Action minimizing invariant measure for positive definite Lagrangian systems, Math. Z, 207 (1991), 169-207.  doi: 10.1007/BF02571383.  Google Scholar

[34]

H. Mitake and H. Tran, Selection problems for a discount degenerate viscous Hamilton-Jacobi equation, Adv. Math., 306 (2017), 684-703.  doi: 10.1016/j.aim.2016.10.032.  Google Scholar

[35]

E. Pimentel and V. Voskanyan, Regularity for second-order stationary mean-field games, Indiana Univ. Math. J., 66 (2017), 1-22.  doi: 10.1512/iumj.2017.66.5944.  Google Scholar

Figure 1.  Density $ m $ for (2.2) which exhibits areas with no agents
Figure 2.  Two distinct solutions, $ \hat u $ and $ \tilde u $, of the Hamilton-Jacobi equation in (2.2). Their gradients differ only when $ m $ vanishes
[1]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[2]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[3]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[4]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[5]

Jie Li, Xiangdong Ye, Tao Yu. Mean equicontinuity, complexity and applications. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 359-393. doi: 10.3934/dcds.2020167

[6]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[7]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[8]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[9]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[10]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[11]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[12]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[13]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[14]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[15]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[16]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[17]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[18]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[19]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[20]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

2019 Impact Factor: 1.053

Article outline

Figures and Tables

[Back to Top]