[1]
|
R. Aharon, et al., A mathematical model for Eph/Ephrin-directed segregation of intermingled cells, PLoS ONE, 9 (2014), 111-803.
|
[2]
|
R. Alonso, J. Young and Y. Cheng, A particle interaction model for the simulation of biological, cross-linked fibers inspired from flocking theory, Cellular and Molecular Bioengineering, 7 (2014), 58-72.
doi: 10.1007/s12195-013-0308-5.
|
[3]
|
W. Alt and M. Dembo, Cytoplasm dynamics and cell motion: Two phase flow models, Math. Biosci., 156 (1999), 207-228.
doi: 10.1016/S0025-5564(98)10067-6.
|
[4]
|
J. Armero, J. Casademunt, L. Ramírez-Piscina and J. M. Sancho, Ballistic and diffusive corrections to front propagation in the presence of multiplicative noise, Phys. Rev. E., 58 (1998).
doi: 10.1103/PhysRevE.58.5494.
|
[5]
|
J. A. Åström, P. B. S. Kumar, I. Vattulainen and M. Karttunen, Strain hardening, avalanches, and strain softening in dense cross-linked actin networks, Phys. Rev. E, 77 (2008), 051913.
|
[6]
|
C. Bardos, R. Santos and R. Sentis, Diffusion approximation and computation of the critical size, Trans. Amer. Math. Soc., 284 (1984), 617-649.
doi: 10.1090/S0002-9947-1984-0743736-0.
|
[7]
|
J. Barré, P. Degond and E. Zatorska, Kinetic theory of particle interactions mediated by dynamical networks, Multiscale Model. Simul., 15 (2017), 1294-1323.
doi: 10.1137/16M1085310.
|
[8]
|
J. Barré, J. A Carrillo, P. Degond, D. Peurichard and E. Zatorska, Particle interactions mediated by dynamical networks: Assessment of macroscopic descriptions, J. Nonlinear Sci., 28 (2018), 235-268.
doi: 10.1007/s00332-017-9408-z.
|
[9]
|
A. Baskaran and M. C. Marchetti, Hydrodynamics of self-propelled hard rods, Phys. Rev. E, 77 (2008), 011920, 9 pp.
doi: 10.1103/PhysRevE.77.011920.
|
[10]
|
E. Bertin, H. Chaté, F. Ginelli, S. Mishra, A. Peshkov and S. Ramaswamy, Mesoscopic theory for fluctuating active nematics, New J. Phys., 15 (2013), 085032.
doi: 10.1088/1367-2630/15/8/085032.
|
[11]
|
R. Bird, C. Curtiss, R. Armstrong and O. Hassager, Dynamics of Polymeric Liquids, Vol. 2, Kinetic Theory, John Wiley & Sons, New York, 1987.
|
[12]
|
C. P. Broedersz, M. Depken, N. Y. Yao, M. R. Pollak, D. A. Weitz and F. C. MacKintosh, Cross-link-governed dynamics of biopolymer networks, Phys. Rev. Lett., 105 (2010), 238101.
doi: 10.1103/PhysRevLett.105.238101.
|
[13]
|
G. A. Buxton, N. Clarke and P. J. Hussey, Actin dynamics and the elasticity of cytoskeletal networks, Express Polymer Letters, 3 (2009), 579-587.
doi: 10.3144/expresspolymlett.2009.72.
|
[14]
|
J. L. Cardy and U. C. Täuber, Field theory of branching and annihilating random walks, Journal of Statistical Physics, 90 (1998), 1-56.
doi: 10.1023/A:1023233431588.
|
[15]
|
E. Carlen, R. Chatelin, P. Degond and B. Wennberg, Kinetic hierarchy and propagation of chaos in biological swarm models, Phys. D, 260 (2013), 90-111.
doi: 10.1016/j.physd.2012.05.013.
|
[16]
|
E. Carlen, P. Degond and B. Wennberg, Kinetic limits for pair-interaction driven master equations and biological swarm models, Math. Models Methods Appl. Sci., 23 (2013), 1339-1376.
doi: 10.1142/S0218202513500115.
|
[17]
|
J. A. Carrillo, A. Chertock and Y. Huang, A finite-volume method for nonlinear nonlocal equations with a gradient flow structure, Commun. Comput. Phys., 17 (2015), 233-258.
doi: 10.4208/cicp.160214.010814a.
|
[18]
|
J. A. Carrillo, R. S. Gvalani, G. A. Pavliotis and A. Schlichting, Long-time behaviour and phase transitions for the McKean-Vlasov equation on the torus, Arch. Ration. Mech. Anal., 235 (2020), 635–690, arXiv: 1806.01719.
doi: 10.1007/s00205-019-01430-4.
|
[19]
|
J. A. Carrillo, Y. Huang and M. Schmidtchen, Zoology of a non-local cross-diffusion model for two species, SIAM J. Appl. Math., 78 (2018), 1078-1104.
doi: 10.1137/17M1128782.
|
[20]
|
L. Chayes and V. Panferov, The McKean-Vlasov equation in finite volume, Journal of Statistical Physics, 138 (2010), 351-380.
doi: 10.1007/s10955-009-9913-z.
|
[21]
|
I. S. Ciuperca, E. Hingant, L. I. Palade and L. Pujo-Menjouet, Fragmentation and monomer lengthening of rod-like polymers, a relevant model for prion proliferation, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 775-799.
doi: 10.3934/dcdsb.2012.17.775.
|
[22]
|
P. Degond, C. Appert-Rolland, M. Moussaid, J. Pettré and G. Theraulaz, A hierarchy of heuristic-based models of crowd dynamics, J. Stat. Phys., 152 (2013), 1033-1068.
doi: 10.1007/s10955-013-0805-x.
|
[23]
|
P. Degond, F. Delebecque and D. Peurichard, Continuum model for linked fibers with alignment interactions, Math. Models Methods Appl. Sci., 26 (2016), 269-318.
doi: 10.1142/S0218202516400030.
|
[24]
|
P. Degond, G. Dimarco, T. B. N. Mac and N. Wang, Macroscopic models of collective motion with repulsion, Commun. Math. Sci., 13 (2015), 1615–1638, arXiv: 1404.4886.
doi: 10.4310/CMS.2015.v13.n6.a12.
|
[25]
|
P. Degond, J.-G. Liu, S. Motsch and V. Panferov, Hydrodynamic models of self-organized dynamics: Derivation and existence theory, Methods Appl. Anal., 20 (2013), 89-114.
doi: 10.4310/MAA.2013.v20.n2.a1.
|
[26]
|
P. Degond and S. Mas-Gallic, Existence of solutions and diffusion approximation for a model Fokker-Planck equation, Transport Theory and Statistical Physics, 16 (1987), 589-636.
doi: 10.1080/00411458708204307.
|
[27]
|
P. Degond and S. Motsch, Continuum limit of self-driven particles with orientation interaction, Math. Models Methods Appl. Sci., 18 (2008), suppl., 1193–1215.
doi: 10.1142/S0218202508003005.
|
[28]
|
M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, International Series of Monographs on Physics, Oxford University Press, Vol. 73, 1999.
|
[29]
|
NM Le Douarin, Cell line segregation during peripheral nervous system ontogeny, Science, 231 (1986), 1515-1522.
doi: 10.1126/science.3952494.
|
[30]
|
A. Frouvelle, A continuum model for alignment of self-propelled particles with anisotropy and density-dependent parameters, Math. Models Methods Appl. Sci., 22 (2012), 1250011, 40 pp.
doi: 10.1142/S021820251250011X.
|
[31]
|
F. Ginelli, F. Peruani, M. Bär and H. Chaté, Large-scale collective properties of self-propelled rods, Phys. Rev. Lett., 104 (2010), 184502.
doi: 10.1103/PhysRevLett.104.184502.
|
[32]
|
J. A. Glazier and F. Graner, Simulation of the differential adhesion driven rearrangement of biological cells, Phys. Rev. E, 47 (1993), 2128-2154.
doi: 10.1103/PhysRevE.47.2128.
|
[33]
|
D. A Head, A. J. Levine and F. C MacKintosh, Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks, Phys. Rev. E, 68 (2003), 061907.
doi: 10.1103/PhysRevE.68.061907.
|
[34]
|
E. Y. C. Hsia, Y. Zhang, H. S. Tran, A. Lim, Y.-H. Chou, G. Lan, P. A. Beachy and X. Zheng, Hedgehog mediated degradation of Ihog adhesion proteins modulates cell segregation in Drosophila wing imaginal discs, Nature Communications, 8 (2017).
doi: 10.1038/s41467-017-01364-z.
|
[35]
|
J. F. Joanny, F. Jülicher, K. Kruse and J. Prost, Hydrodynamic theory for multi-component active polar gels, New J. Phys., 9 (2007), 422.
doi: 10.1088/1367-2630/9/11/422.
|
[36]
|
R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17.
doi: 10.1137/S0036141096303359.
|
[37]
|
H. Karsher, J. Lammerding, H. Huang, R. T. Lee, R. D. Kamm and M. R. Kaazempur-Mofrad, A three-dimensional viscoelastic model for cell deformation with experimental verification, Biophysical Journal, 85 (2003), 3336-3349.
doi: 10.1016/S0006-3495(03)74753-5.
|
[38]
|
D. A. Kessler and H. Levine, Fluctuation-induced diffusive instabilities, Nature, 394 (1998), 556-558.
doi: 10.1038/29020.
|
[39]
|
J. J. Kupiec, A Darwinian theory for the origin of cellular differentiation, Molecular and General Genetics MGG, 255 (1997), 201-208.
doi: 10.1007/s004380050490.
|
[40]
|
W. Maier and A. Saupe, Eine einfache molekulare Theorie des nematischen kristallinflüssigen Zustandes, Z. Naturforsch., 13 (1958), 564-566.
doi: 10.1515/zna-1958-0716.
|
[41]
|
S. Mischler and C. Mouhot, Kac's program in kinetic theory, Invent. Math., 193 (2013), 1-147.
doi: 10.1007/s00222-012-0422-3.
|
[42]
|
S. Mischler, C. Mouhot and B. Wennberg, A new approach to quantitative propagation of chaos for drift, diffusion and jump processes, Probab. Theory Related Fields, 161 (2015), 1-59.
doi: 10.1007/s00440-013-0542-8.
|
[43]
|
S. Nesic, R. Cuerno and E. Moro, Macroscopic response to microscopic intrinsic noise in three-dimensional fisher fronts, Phys. Rev. Lett., 113 (2014), 180602.
doi: 10.1103/PhysRevLett.113.180602.
|
[44]
|
D. Oelz, C. Schmeiser and J. V. Small, Modeling of the actin-cytoskeleton in symmetric lamellipodial fragments, Cell Adhesion and Migration, 2 (2008), 117-126.
doi: 10.4161/cam.2.2.6373.
|
[45]
|
L. Onsager, The effects of shape on the interaction of colloidal particles, Ann. New York Acad. Sci., 51 (1949), 627-659.
|
[46]
|
F. Peruani, A. Deutsch and M. Bär, Nonequilibrium clustering of self-propelled rods, Phys. Rev. E, 7 (2006), 030904(R).
doi: 10.1103/PhysRevE.74.030904.
|
[47]
|
D. Peurichard, F. Delebecque, A. Lorsignol, C. Barreau, J. Rouquette, X. Descombes, L. Casteilla and P. Degond, Simple mechanical cues could explain adipose tissue morphology, J. Theor. Biol., 429 (2017), 61-81.
doi: 10.1016/j.jtbi.2017.06.030.
|
[48]
|
F. Poupaud, Diffusion approximation of the linear semiconductor Boltzmann equation: Analysis of boundary layers, Asymptot. Anal., 4 (1991), 293-317.
doi: 10.3233/ASY-1991-4402.
|
[49]
|
Y. Sone, Kinetic Theory and Fluid Dynamics, Birkhäuser, Boston, Inc., Boston, MA, 2002.
doi: 10.1007/978-1-4612-0061-1.
|
[50]
|
M. S. Steinberg, Differential adhesion in morphogenesis: A modern view, Curr. Opin. Genet. Dev., 17 (2007), 281-286.
doi: 10.1016/j.gde.2007.05.002.
|
[51]
|
L. A. Taber, Y. Shi, L. Yang and P. V. Bayly, A poroelastic model for cell crawling including mechanical coupling between cytoskeletal contraction and actin polymerization, Journal of Mechanics of Materials and Structures, 6 (2011), 569-589.
doi: 10.2140/jomms.2011.6.569.
|
[52]
|
M. E. Taylor, Partial Differential Equations III: Nonlinear Equations, Applied Mathematical Sciences, 117. Springer-Verlag, New York, 1997.
|
[53]
|
W. Taylor, Z. Katsimitsoulia and A. Poliakov, Simulation of cell movement and interaction, Journal of Bioinformatics and Computational Biology, 09 (2011), 91-110.
doi: 10.1142/S0219720011005318.
|
[54]
|
W. R. Taylor et al., A mechanical model of cell segregation driven by differential adhesion, PLoS One, 7 (2012), e43226.
|
[55]
|
H. B. Taylor et al, Cell segregation and border sharpening by Eph receptor-ephrin-mediated heterotypic repulsion, J. R. Soc. Interface, 14 (2017), 20170338.
|
[56]
|
T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.
doi: 10.1103/PhysRevLett.75.1226.
|
[57]
|
T. Vicsek and A. Zafeiris, Collective motion, Phys. Rep., 517 (2012), 71-140.
doi: 10.1016/j.physrep.2012.03.004.
|
[58]
|
M. Wijgerde, F. Grosveld and P. Fraser, Transcription complex stability and chromatin dynamics in vivo, Nature, 377 (1995), 209-213.
doi: 10.1038/377209a0.
|