September  2020, 15(3): 369-387. doi: 10.3934/nhm.2020023

Relative entropy method for the relaxation limit of hydrodynamic models

1. 

Mathematical Institute, University of Oxford, Oxford, OX2 6GG, United Kingdom

2. 

School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China and, Department of Mathematics, Imperial College London, London, SW7 2AZ, United Kingdom

3. 

Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warszawa, Poland

* Corresponding author: José Antonio Carrillo

Received  October 2019 Revised  April 2020 Published  September 2020 Early access  September 2020

We show how to obtain general nonlinear aggregation-diffusion models, including Keller-Segel type models with nonlinear diffusions, as relaxations from nonlocal compressible Euler-type hydrodynamic systems via the relative entropy method. We discuss the assumptions on the confinement and interaction potentials depending on the relative energy of the free energy functional allowing for this relaxation limit to hold. We deal with weak solutions for the nonlocal compressible Euler-type systems and strong solutions for the limiting aggregation-diffusion equations. Finally, we show the existence of weak solutions to the nonlocal compressible Euler-type systems satisfying the needed properties for completeness sake.

Citation: José Antonio Carrillo, Yingping Peng, Aneta Wróblewska-Kamińska. Relative entropy method for the relaxation limit of hydrodynamic models. Networks and Heterogeneous Media, 2020, 15 (3) : 369-387. doi: 10.3934/nhm.2020023
References:
[1]

P. Antonelli and P. Marcati, The quantum hydrodynamics system in two space dimensions, Arch. Rational Mech. Anal., 203 (2012), 499-527.  doi: 10.1007/s00205-011-0454-7.

[2]

P. Antonelli and P. Marcati, On the finite energy weak solutions to a system in quantum fluid dynamics, Comm. Math. Physics, 287 (2009), 657-686.  doi: 10.1007/s00220-008-0632-0.

[3]

A. BlanchetJ. A. Carrillo and P. Laurencot, Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differential Equations, 35 (2009), 133-168.  doi: 10.1007/s00526-008-0200-7.

[4]

D. BrandonT. Lin and R. C. Rogers, Phase transitions and hysteresis in nonlocal and order-parameter models, Meccanica, 30 (1995), 541-565.  doi: 10.1007/BF01557084.

[5]

V. CalvezJ. A. Carrillo and F. Hoffmann, Equilibria of homogeneous functionals in the fair-competition regime, Nonlinear Anal., 159 (2017), 85-128.  doi: 10.1016/j.na.2017.03.008.

[6]

J. A. Carrillo and Y.-P. Choi, Quantitative error estimates for the large friction limit of Vlasov equation with nonlocal forces, Ann. Inst. H. Poincaré Anal. Non Linéaire, 37 (2020), 925–954, arXiv: 1901.07204. doi: 10.1016/j.anihpc.2020.02.001.

[7]

J. A. CarrilloY.-P. Choi and O. Tse, Convergence to equilibrium in Wasserstein distance for damped Euler equations with interaction forces, Comm. Math. Phys., 365 (2019), 329-361.  doi: 10.1007/s00220-018-3276-8.

[8]

J. A. CarrilloE. FeireislP. Gwiazda and A. Świerczewska-Gwiazda, Weak solutions for Euler systems with non-local interactions, J. London Math. Soc., 95 (2017), 705-724.  doi: 10.1112/jlms.12027.

[9]

J. A. Carrillo, F. Hoffmann, E. Mainini and B. Volzone, Ground states in the diffusion-dominated regime, Calc. Var. Partial Differential Equations, 57 (2018), Paper No. 127, 28 pp. doi: 10.1007/s00526-018-1402-2.

[10]

J. A. CarrilloR. J. McCann and C. Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media, Arch. Ration. Mech. Anal., 179 (2006), 217-263.  doi: 10.1007/s00205-005-0386-1.

[11]

J. A. CarrilloR. J. McCann and C. Villani, Kinetic equilibration rates for granular media and related equations: Entropy dissipation and mass transportation estimates, Rev. Mat. Iberoamericana, 19 (2003), 971-1018.  doi: 10.4171/RMI/376.

[12]

L. ChenL. Hong and J. Wang, Parabolic elliptic type Keller-Segel system on the whole space case, Discrete Contin. Dyn. Syst., 36 (2016), 1061-1084.  doi: 10.3934/dcds.2016.36.1061.

[13]

E. Chiodaroli, A counterexample to well-posedness of entropy solutions to the compressible Euler system, J. Hyperbolic Differ. Eqs., 11 (2014), 493-519.  doi: 10.1142/S0219891614500143.

[14]

E. ChiodaroliE. Feireisl and O. Kreml, On the weak solutions to the equations of a compressible heat conducting gas, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 225-243.  doi: 10.1016/j.anihpc.2013.11.005.

[15]

J.-F. Coulombel and T. Goudon, The strong relaxation limit of the multidimensional isothermal Euler equations, Trans. Am. Math. Soc., 359 (2007), 637-648.  doi: 10.1090/S0002-9947-06-04028-1.

[16]

C. M. Dafermos, Stability of motions of thermoelastic fluids, J. Thermal Stresses, 2 (1979), 127-134.  doi: 10.1080/01495737908962394.

[17]

C. M. Dafermos, The second law of thermodynamics and stability, Arch. Ration. Mech. Anal., 70 (1979), 167-179.  doi: 10.1007/BF00250353.

[18]

C. De Lellis and L. Székelyhidi, On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal., 195 (2010), 225-260.  doi: 10.1007/s00205-008-0201-x.

[19]

R. J. Diperna, Uniqueness of solutions to hyperbolic conservation laws, Indiana Univ. Math. J., 28 (1979), 137-188.  doi: 10.1512/iumj.1979.28.28011.

[20]

D. DonatelliE. Feireisl and P. Marcati, Well/ill posedness for the Euler-Korteweg-Poisson system and related problems, Commun. Partial Differential Equations, 40 (2015), 1314-1335.  doi: 10.1080/03605302.2014.972517.

[21]

J. E. Dunn and J. Serrin, On the thermomechanics of interstitial working, Arch. Rational Mech. Anal., 88 (1985), 95-133.  doi: 10.1007/BF00250907.

[22]

E. Feireisl, Weak solutions to problems involving inviscid fluids, Mathematical Fluid Dynamics, Present and Future, Springer Proc. Math. Stat., Springer, Tokyo, 183 (2016), 377-399.  doi: 10.1007/978-4-431-56457-7_13.

[23]

E. FeireislP. Gwiazda and A. Świerczewska-Gwiazda, On weak solutions to the 2d Savage-Hutter model of the motion of a gravity driven avalanche flow, Comm. Partial Differential Equations, 41 (2016), 759-773.  doi: 10.1080/03605302.2015.1127968.

[24]

J. GiesselmannC. Lattanzio and A. E. Tzavaras, Relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics, Arch. Rational Mech. Anal., 223 (2017), 1427-1484.  doi: 10.1007/s00205-016-1063-2.

[25]

B. D. GoddardG. A. Pavliotis and S. Kalliadasis, The overdamped limit of dynamic density functional theory: Rigorous results, Multiscale Model. Simul., 10 (2012), 633-663.  doi: 10.1137/110844659.

[26]

F. HuangP. Marcati and R. Pan, Convergence to the Barenblatt solution for the compressible Euler equations with damping and vacuum, Arch. Ration. Mech. Anal., 176 (2005), 1-24.  doi: 10.1007/s00205-004-0349-y.

[27]

F. Huang and R. Pan, Asymptotic behavior of the solutions to the damped compressible Euler equations with vacuum, J. Differ. Eqs., 220 (2006), 207–233. doi: 10.1016/j.jde.2005.03.012.

[28]

F. HuangR. Pan and Z. Wang, $L^1$ convergence to the Barenblatt solution for compressible Euler equations with damping, Arch. Ration. Mech. Anal., 200 (2011), 665-689.  doi: 10.1007/s00205-010-0355-1.

[29]

S. JiangQ. JuH. Li and Y. Li, Quasi-neutral limit of the two-fluid Euler-Poisson system, Commum. Pure Appl. Anal., 9 (2010), 1577-1590.  doi: 10.3934/cpaa.2010.9.1577.

[30]

S. Junca and M. Rascle, Strong relaxation of the isothermal Euler system to the heat equation, Z. Angew. Math. Phys., 53 (2002), 239-264.  doi: 10.1007/s00033-002-8154-7.

[31]

C. Lattanzio and A. E. Tzavaras, From gas dynamics with large friction to gradient flows describing diffusion theories, Comm. Partial Differential Equations, 42 (2017), 261–290. doi: 10.1080/03605302.2016.1269808.

[32]

C. Lattanzio and A. E. Tzavaras, Relative entropy in diffusive relaxation, SIAM J. Math. Anal., 45 (2013), 1563-1584.  doi: 10.1137/120891307.

[33]

T. Luo and J. Smoller, Existence and non-linear stability of rotating star solutions of the compressible Euler-Poisson equations, Arch. Ration. Mech. Anal., 191 (2009), 447-496.  doi: 10.1007/s00205-007-0108-y.

[34]

P. Marcati and A. Milani, The one-dimensional Darcy's law as the limit of a compressible Euler flow, J. Differ. Eqs., 84 (1990), 129–147. doi: 10.1016/0022-0396(90)90130-H.

[35]

Y.-J. Peng and Y.-G. Wang, Convergence of compressible Euler-Poisson equations to incompressible type Euler equations, Asymptotic Anal., 41 (2005), 141-160. 

[36]

X. Ren and L. Truskinovsky, Finite scale microstructures in nonlocal elasticity, J. Elasticity, 59 (2000), 319-355.  doi: 10.1023/A:1011003321453.

[37]

Y. Sugiyama, Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenrate Keller-Segel systems, Differential Integral Equations, 19 (2006), 841-876. 

[38]

C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics, 58. American Mathematical Society, Providence, RI, 2003. doi: 10.1090/gsm/058.

show all references

References:
[1]

P. Antonelli and P. Marcati, The quantum hydrodynamics system in two space dimensions, Arch. Rational Mech. Anal., 203 (2012), 499-527.  doi: 10.1007/s00205-011-0454-7.

[2]

P. Antonelli and P. Marcati, On the finite energy weak solutions to a system in quantum fluid dynamics, Comm. Math. Physics, 287 (2009), 657-686.  doi: 10.1007/s00220-008-0632-0.

[3]

A. BlanchetJ. A. Carrillo and P. Laurencot, Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differential Equations, 35 (2009), 133-168.  doi: 10.1007/s00526-008-0200-7.

[4]

D. BrandonT. Lin and R. C. Rogers, Phase transitions and hysteresis in nonlocal and order-parameter models, Meccanica, 30 (1995), 541-565.  doi: 10.1007/BF01557084.

[5]

V. CalvezJ. A. Carrillo and F. Hoffmann, Equilibria of homogeneous functionals in the fair-competition regime, Nonlinear Anal., 159 (2017), 85-128.  doi: 10.1016/j.na.2017.03.008.

[6]

J. A. Carrillo and Y.-P. Choi, Quantitative error estimates for the large friction limit of Vlasov equation with nonlocal forces, Ann. Inst. H. Poincaré Anal. Non Linéaire, 37 (2020), 925–954, arXiv: 1901.07204. doi: 10.1016/j.anihpc.2020.02.001.

[7]

J. A. CarrilloY.-P. Choi and O. Tse, Convergence to equilibrium in Wasserstein distance for damped Euler equations with interaction forces, Comm. Math. Phys., 365 (2019), 329-361.  doi: 10.1007/s00220-018-3276-8.

[8]

J. A. CarrilloE. FeireislP. Gwiazda and A. Świerczewska-Gwiazda, Weak solutions for Euler systems with non-local interactions, J. London Math. Soc., 95 (2017), 705-724.  doi: 10.1112/jlms.12027.

[9]

J. A. Carrillo, F. Hoffmann, E. Mainini and B. Volzone, Ground states in the diffusion-dominated regime, Calc. Var. Partial Differential Equations, 57 (2018), Paper No. 127, 28 pp. doi: 10.1007/s00526-018-1402-2.

[10]

J. A. CarrilloR. J. McCann and C. Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media, Arch. Ration. Mech. Anal., 179 (2006), 217-263.  doi: 10.1007/s00205-005-0386-1.

[11]

J. A. CarrilloR. J. McCann and C. Villani, Kinetic equilibration rates for granular media and related equations: Entropy dissipation and mass transportation estimates, Rev. Mat. Iberoamericana, 19 (2003), 971-1018.  doi: 10.4171/RMI/376.

[12]

L. ChenL. Hong and J. Wang, Parabolic elliptic type Keller-Segel system on the whole space case, Discrete Contin. Dyn. Syst., 36 (2016), 1061-1084.  doi: 10.3934/dcds.2016.36.1061.

[13]

E. Chiodaroli, A counterexample to well-posedness of entropy solutions to the compressible Euler system, J. Hyperbolic Differ. Eqs., 11 (2014), 493-519.  doi: 10.1142/S0219891614500143.

[14]

E. ChiodaroliE. Feireisl and O. Kreml, On the weak solutions to the equations of a compressible heat conducting gas, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 225-243.  doi: 10.1016/j.anihpc.2013.11.005.

[15]

J.-F. Coulombel and T. Goudon, The strong relaxation limit of the multidimensional isothermal Euler equations, Trans. Am. Math. Soc., 359 (2007), 637-648.  doi: 10.1090/S0002-9947-06-04028-1.

[16]

C. M. Dafermos, Stability of motions of thermoelastic fluids, J. Thermal Stresses, 2 (1979), 127-134.  doi: 10.1080/01495737908962394.

[17]

C. M. Dafermos, The second law of thermodynamics and stability, Arch. Ration. Mech. Anal., 70 (1979), 167-179.  doi: 10.1007/BF00250353.

[18]

C. De Lellis and L. Székelyhidi, On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal., 195 (2010), 225-260.  doi: 10.1007/s00205-008-0201-x.

[19]

R. J. Diperna, Uniqueness of solutions to hyperbolic conservation laws, Indiana Univ. Math. J., 28 (1979), 137-188.  doi: 10.1512/iumj.1979.28.28011.

[20]

D. DonatelliE. Feireisl and P. Marcati, Well/ill posedness for the Euler-Korteweg-Poisson system and related problems, Commun. Partial Differential Equations, 40 (2015), 1314-1335.  doi: 10.1080/03605302.2014.972517.

[21]

J. E. Dunn and J. Serrin, On the thermomechanics of interstitial working, Arch. Rational Mech. Anal., 88 (1985), 95-133.  doi: 10.1007/BF00250907.

[22]

E. Feireisl, Weak solutions to problems involving inviscid fluids, Mathematical Fluid Dynamics, Present and Future, Springer Proc. Math. Stat., Springer, Tokyo, 183 (2016), 377-399.  doi: 10.1007/978-4-431-56457-7_13.

[23]

E. FeireislP. Gwiazda and A. Świerczewska-Gwiazda, On weak solutions to the 2d Savage-Hutter model of the motion of a gravity driven avalanche flow, Comm. Partial Differential Equations, 41 (2016), 759-773.  doi: 10.1080/03605302.2015.1127968.

[24]

J. GiesselmannC. Lattanzio and A. E. Tzavaras, Relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics, Arch. Rational Mech. Anal., 223 (2017), 1427-1484.  doi: 10.1007/s00205-016-1063-2.

[25]

B. D. GoddardG. A. Pavliotis and S. Kalliadasis, The overdamped limit of dynamic density functional theory: Rigorous results, Multiscale Model. Simul., 10 (2012), 633-663.  doi: 10.1137/110844659.

[26]

F. HuangP. Marcati and R. Pan, Convergence to the Barenblatt solution for the compressible Euler equations with damping and vacuum, Arch. Ration. Mech. Anal., 176 (2005), 1-24.  doi: 10.1007/s00205-004-0349-y.

[27]

F. Huang and R. Pan, Asymptotic behavior of the solutions to the damped compressible Euler equations with vacuum, J. Differ. Eqs., 220 (2006), 207–233. doi: 10.1016/j.jde.2005.03.012.

[28]

F. HuangR. Pan and Z. Wang, $L^1$ convergence to the Barenblatt solution for compressible Euler equations with damping, Arch. Ration. Mech. Anal., 200 (2011), 665-689.  doi: 10.1007/s00205-010-0355-1.

[29]

S. JiangQ. JuH. Li and Y. Li, Quasi-neutral limit of the two-fluid Euler-Poisson system, Commum. Pure Appl. Anal., 9 (2010), 1577-1590.  doi: 10.3934/cpaa.2010.9.1577.

[30]

S. Junca and M. Rascle, Strong relaxation of the isothermal Euler system to the heat equation, Z. Angew. Math. Phys., 53 (2002), 239-264.  doi: 10.1007/s00033-002-8154-7.

[31]

C. Lattanzio and A. E. Tzavaras, From gas dynamics with large friction to gradient flows describing diffusion theories, Comm. Partial Differential Equations, 42 (2017), 261–290. doi: 10.1080/03605302.2016.1269808.

[32]

C. Lattanzio and A. E. Tzavaras, Relative entropy in diffusive relaxation, SIAM J. Math. Anal., 45 (2013), 1563-1584.  doi: 10.1137/120891307.

[33]

T. Luo and J. Smoller, Existence and non-linear stability of rotating star solutions of the compressible Euler-Poisson equations, Arch. Ration. Mech. Anal., 191 (2009), 447-496.  doi: 10.1007/s00205-007-0108-y.

[34]

P. Marcati and A. Milani, The one-dimensional Darcy's law as the limit of a compressible Euler flow, J. Differ. Eqs., 84 (1990), 129–147. doi: 10.1016/0022-0396(90)90130-H.

[35]

Y.-J. Peng and Y.-G. Wang, Convergence of compressible Euler-Poisson equations to incompressible type Euler equations, Asymptotic Anal., 41 (2005), 141-160. 

[36]

X. Ren and L. Truskinovsky, Finite scale microstructures in nonlocal elasticity, J. Elasticity, 59 (2000), 319-355.  doi: 10.1023/A:1011003321453.

[37]

Y. Sugiyama, Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenrate Keller-Segel systems, Differential Integral Equations, 19 (2006), 841-876. 

[38]

C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics, 58. American Mathematical Society, Providence, RI, 2003. doi: 10.1090/gsm/058.

[1]

Christian Rohde, Wenjun Wang, Feng Xie. Hyperbolic-hyperbolic relaxation limit for a 1D compressible radiation hydrodynamics model: superposition of rarefaction and contact waves. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2145-2171. doi: 10.3934/cpaa.2013.12.2145

[2]

Denis Serre, Alexis F. Vasseur. The relative entropy method for the stability of intermediate shock waves; the rich case. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4569-4577. doi: 10.3934/dcds.2016.36.4569

[3]

Luiza H. F. Andrade, Rui F. Vigelis, Charles C. Cavalcante. A generalized quantum relative entropy. Advances in Mathematics of Communications, 2020, 14 (3) : 413-422. doi: 10.3934/amc.2020063

[4]

Weiran Sun, Min Tang. A relaxation method for one dimensional traveling waves of singular and nonlocal equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1459-1491. doi: 10.3934/dcdsb.2013.18.1459

[5]

Dong Li, Xiaoyi Zhang. On a nonlocal aggregation model with nonlinear diffusion. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 301-323. doi: 10.3934/dcds.2010.27.301

[6]

Xiaomin Zhou. Relative entropy dimension of topological dynamical systems. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6631-6642. doi: 10.3934/dcds.2019288

[7]

Lonnie Turpin, Jr., Kelli Bruchhaus, Keith Credo, Gerard Ornas, Jr.. Relative entropy and envy-free allocation. Journal of Dynamics and Games, 2022  doi: 10.3934/jdg.2022013

[8]

Nuno J. Alves, Athanasios E. Tzavaras. The relaxation limit of bipolar fluid models. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 211-237. doi: 10.3934/dcds.2021113

[9]

Shin-Ichiro Ei, Hirofumi Izuhara, Masayasu Mimura. Infinite dimensional relaxation oscillation in aggregation-growth systems. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1859-1887. doi: 10.3934/dcdsb.2012.17.1859

[10]

Jean Dolbeault, Giuseppe Toscani. Fast diffusion equations: Matching large time asymptotics by relative entropy methods. Kinetic and Related Models, 2011, 4 (3) : 701-716. doi: 10.3934/krm.2011.4.701

[11]

Razvan C. Fetecau, Hui Huang, Daniel Messenger, Weiran Sun. Zero-diffusion limit for aggregation equations over bounded domains. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022078

[12]

Martin Burger, Marco Di Francesco. Large time behavior of nonlocal aggregation models with nonlinear diffusion. Networks and Heterogeneous Media, 2008, 3 (4) : 749-785. doi: 10.3934/nhm.2008.3.749

[13]

Jianping Wang, Mingxin Wang. Free boundary problems with nonlocal and local diffusions Ⅱ: Spreading-vanishing and long-time behavior. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4721-4736. doi: 10.3934/dcdsb.2020121

[14]

Sze-Bi Hsu, Junping Shi. Relaxation oscillation profile of limit cycle in predator-prey system. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 893-911. doi: 10.3934/dcdsb.2009.11.893

[15]

Jiang Xu, Wen-An Yong. Zero-relaxation limit of non-isentropic hydrodynamic models for semiconductors. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1319-1332. doi: 10.3934/dcds.2009.25.1319

[16]

Qiang Du, Jingyan Zhang. Asymptotic analysis of a diffuse interface relaxation to a nonlocal optimal partition problem. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1443-1461. doi: 10.3934/dcds.2011.29.1443

[17]

Manas Bhatnagar, Hailiang Liu. Well-posedness and critical thresholds in a nonlocal Euler system with relaxation. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5271-5289. doi: 10.3934/dcds.2021076

[18]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[19]

Matteo Bonforte, Jean Dolbeault, Matteo Muratori, Bruno Nazaret. Weighted fast diffusion equations (Part Ⅱ): Sharp asymptotic rates of convergence in relative error by entropy methods. Kinetic and Related Models, 2017, 10 (1) : 61-91. doi: 10.3934/krm.2017003

[20]

Yanqin Bai, Chuanhao Guo. Doubly nonnegative relaxation method for solving multiple objective quadratic programming problems. Journal of Industrial and Management Optimization, 2014, 10 (2) : 543-556. doi: 10.3934/jimo.2014.10.543

2020 Impact Factor: 1.213

Metrics

  • PDF downloads (253)
  • HTML views (102)
  • Cited by (0)

[Back to Top]