We show how to obtain general nonlinear aggregation-diffusion models, including Keller-Segel type models with nonlinear diffusions, as relaxations from nonlocal compressible Euler-type hydrodynamic systems via the relative entropy method. We discuss the assumptions on the confinement and interaction potentials depending on the relative energy of the free energy functional allowing for this relaxation limit to hold. We deal with weak solutions for the nonlocal compressible Euler-type systems and strong solutions for the limiting aggregation-diffusion equations. Finally, we show the existence of weak solutions to the nonlocal compressible Euler-type systems satisfying the needed properties for completeness sake.
Citation: |
[1] |
P. Antonelli and P. Marcati, The quantum hydrodynamics system in two space dimensions, Arch. Rational Mech. Anal., 203 (2012), 499-527.
doi: 10.1007/s00205-011-0454-7.![]() ![]() ![]() |
[2] |
P. Antonelli and P. Marcati, On the finite energy weak solutions to a system in quantum fluid dynamics, Comm. Math. Physics, 287 (2009), 657-686.
doi: 10.1007/s00220-008-0632-0.![]() ![]() ![]() |
[3] |
A. Blanchet, J. A. Carrillo and P. Laurencot, Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differential Equations, 35 (2009), 133-168.
doi: 10.1007/s00526-008-0200-7.![]() ![]() ![]() |
[4] |
D. Brandon, T. Lin and R. C. Rogers, Phase transitions and hysteresis in nonlocal and order-parameter models, Meccanica, 30 (1995), 541-565.
doi: 10.1007/BF01557084.![]() ![]() ![]() |
[5] |
V. Calvez, J. A. Carrillo and F. Hoffmann, Equilibria of homogeneous functionals in the fair-competition regime, Nonlinear Anal., 159 (2017), 85-128.
doi: 10.1016/j.na.2017.03.008.![]() ![]() ![]() |
[6] |
J. A. Carrillo and Y.-P. Choi, Quantitative error estimates for the large friction limit of Vlasov equation with nonlocal forces, Ann. Inst. H. Poincaré Anal. Non Linéaire, 37 (2020), 925–954, arXiv: 1901.07204.
doi: 10.1016/j.anihpc.2020.02.001.![]() ![]() ![]() |
[7] |
J. A. Carrillo, Y.-P. Choi and O. Tse, Convergence to equilibrium in Wasserstein distance for damped Euler equations with interaction forces, Comm. Math. Phys., 365 (2019), 329-361.
doi: 10.1007/s00220-018-3276-8.![]() ![]() ![]() |
[8] |
J. A. Carrillo, E. Feireisl, P. Gwiazda and A. Świerczewska-Gwiazda, Weak solutions for Euler systems with non-local interactions, J. London Math. Soc., 95 (2017), 705-724.
doi: 10.1112/jlms.12027.![]() ![]() ![]() |
[9] |
J. A. Carrillo, F. Hoffmann, E. Mainini and B. Volzone, Ground states in the diffusion-dominated regime, Calc. Var. Partial Differential Equations, 57 (2018), Paper No. 127, 28 pp.
doi: 10.1007/s00526-018-1402-2.![]() ![]() ![]() |
[10] |
J. A. Carrillo, R. J. McCann and C. Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media, Arch. Ration. Mech. Anal., 179 (2006), 217-263.
doi: 10.1007/s00205-005-0386-1.![]() ![]() ![]() |
[11] |
J. A. Carrillo, R. J. McCann and C. Villani, Kinetic equilibration rates for granular media and related equations: Entropy dissipation and mass transportation estimates, Rev. Mat. Iberoamericana, 19 (2003), 971-1018.
doi: 10.4171/RMI/376.![]() ![]() ![]() |
[12] |
L. Chen, L. Hong and J. Wang, Parabolic elliptic type Keller-Segel system on the whole space case, Discrete Contin. Dyn. Syst., 36 (2016), 1061-1084.
doi: 10.3934/dcds.2016.36.1061.![]() ![]() ![]() |
[13] |
E. Chiodaroli, A counterexample to well-posedness of entropy solutions to the compressible Euler system, J. Hyperbolic Differ. Eqs., 11 (2014), 493-519.
doi: 10.1142/S0219891614500143.![]() ![]() ![]() |
[14] |
E. Chiodaroli, E. Feireisl and O. Kreml, On the weak solutions to the equations of a compressible heat conducting gas, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 225-243.
doi: 10.1016/j.anihpc.2013.11.005.![]() ![]() ![]() |
[15] |
J.-F. Coulombel and T. Goudon, The strong relaxation limit of the multidimensional isothermal Euler equations, Trans. Am. Math. Soc., 359 (2007), 637-648.
doi: 10.1090/S0002-9947-06-04028-1.![]() ![]() ![]() |
[16] |
C. M. Dafermos, Stability of motions of thermoelastic fluids, J. Thermal Stresses, 2 (1979), 127-134.
doi: 10.1080/01495737908962394.![]() ![]() |
[17] |
C. M. Dafermos, The second law of thermodynamics and stability, Arch. Ration. Mech. Anal., 70 (1979), 167-179.
doi: 10.1007/BF00250353.![]() ![]() ![]() |
[18] |
C. De Lellis and L. Székelyhidi, On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal., 195 (2010), 225-260.
doi: 10.1007/s00205-008-0201-x.![]() ![]() ![]() |
[19] |
R. J. Diperna, Uniqueness of solutions to hyperbolic conservation laws, Indiana Univ. Math. J., 28 (1979), 137-188.
doi: 10.1512/iumj.1979.28.28011.![]() ![]() ![]() |
[20] |
D. Donatelli, E. Feireisl and P. Marcati, Well/ill posedness for the Euler-Korteweg-Poisson system and related problems, Commun. Partial Differential Equations, 40 (2015), 1314-1335.
doi: 10.1080/03605302.2014.972517.![]() ![]() ![]() |
[21] |
J. E. Dunn and J. Serrin, On the thermomechanics of interstitial working, Arch. Rational Mech. Anal., 88 (1985), 95-133.
doi: 10.1007/BF00250907.![]() ![]() ![]() |
[22] |
E. Feireisl, Weak solutions to problems involving inviscid fluids, Mathematical Fluid Dynamics, Present and Future, Springer Proc. Math. Stat., Springer, Tokyo, 183 (2016), 377-399.
doi: 10.1007/978-4-431-56457-7_13.![]() ![]() ![]() |
[23] |
E. Feireisl, P. Gwiazda and A. Świerczewska-Gwiazda, On weak solutions to the 2d Savage-Hutter model of the motion of a gravity driven avalanche flow, Comm. Partial Differential Equations, 41 (2016), 759-773.
doi: 10.1080/03605302.2015.1127968.![]() ![]() ![]() |
[24] |
J. Giesselmann, C. Lattanzio and A. E. Tzavaras, Relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics, Arch. Rational Mech. Anal., 223 (2017), 1427-1484.
doi: 10.1007/s00205-016-1063-2.![]() ![]() ![]() |
[25] |
B. D. Goddard, G. A. Pavliotis and S. Kalliadasis, The overdamped limit of dynamic density functional theory: Rigorous results, Multiscale Model. Simul., 10 (2012), 633-663.
doi: 10.1137/110844659.![]() ![]() ![]() |
[26] |
F. Huang, P. Marcati and R. Pan, Convergence to the Barenblatt solution for the compressible Euler equations with damping and vacuum, Arch. Ration. Mech. Anal., 176 (2005), 1-24.
doi: 10.1007/s00205-004-0349-y.![]() ![]() ![]() |
[27] |
F. Huang and R. Pan, Asymptotic behavior of the solutions to the damped compressible Euler equations with vacuum, J. Differ. Eqs., 220 (2006), 207–233.
doi: 10.1016/j.jde.2005.03.012.![]() ![]() ![]() |
[28] |
F. Huang, R. Pan and Z. Wang, $L^1$ convergence to the Barenblatt solution for compressible Euler equations with damping, Arch. Ration. Mech. Anal., 200 (2011), 665-689.
doi: 10.1007/s00205-010-0355-1.![]() ![]() ![]() |
[29] |
S. Jiang, Q. Ju, H. Li and Y. Li, Quasi-neutral limit of the two-fluid Euler-Poisson system, Commum. Pure Appl. Anal., 9 (2010), 1577-1590.
doi: 10.3934/cpaa.2010.9.1577.![]() ![]() ![]() |
[30] |
S. Junca and M. Rascle, Strong relaxation of the isothermal Euler system to the heat equation, Z. Angew. Math. Phys., 53 (2002), 239-264.
doi: 10.1007/s00033-002-8154-7.![]() ![]() ![]() |
[31] |
C. Lattanzio and A. E. Tzavaras, From gas dynamics with large friction to gradient flows describing diffusion theories, Comm. Partial Differential Equations, 42 (2017), 261–290.
doi: 10.1080/03605302.2016.1269808.![]() ![]() ![]() |
[32] |
C. Lattanzio and A. E. Tzavaras, Relative entropy in diffusive relaxation, SIAM J. Math. Anal., 45 (2013), 1563-1584.
doi: 10.1137/120891307.![]() ![]() ![]() |
[33] |
T. Luo and J. Smoller, Existence and non-linear stability of rotating star solutions of the compressible Euler-Poisson equations, Arch. Ration. Mech. Anal., 191 (2009), 447-496.
doi: 10.1007/s00205-007-0108-y.![]() ![]() ![]() |
[34] |
P. Marcati and A. Milani, The one-dimensional Darcy's law as the limit of a compressible Euler flow, J. Differ. Eqs., 84 (1990), 129–147.
doi: 10.1016/0022-0396(90)90130-H.![]() ![]() ![]() |
[35] |
Y.-J. Peng and Y.-G. Wang, Convergence of compressible Euler-Poisson equations to incompressible type Euler equations, Asymptotic Anal., 41 (2005), 141-160.
![]() ![]() |
[36] |
X. Ren and L. Truskinovsky, Finite scale microstructures in nonlocal elasticity, J. Elasticity, 59 (2000), 319-355.
doi: 10.1023/A:1011003321453.![]() ![]() ![]() |
[37] |
Y. Sugiyama, Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenrate Keller-Segel systems, Differential Integral Equations, 19 (2006), 841-876.
![]() ![]() |
[38] |
C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics, 58. American Mathematical Society, Providence, RI, 2003.
doi: 10.1090/gsm/058.![]() ![]() ![]() |