September  2020, 15(3): 389-404. doi: 10.3934/nhm.2020024

A BGK kinetic model with local velocity alignment forces

1. 

Department of Mathematics, Yonsei University, Seoul 03722, Republic of Korea

2. 

Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Republic of Korea

* Corresponding author: Young-Pil Choi

Received  January 2020 Revised  May 2020 Published  September 2020

Fund Project: Young-Pil Choi is supported by National Research Foundation of Korea(NRF) grants funded by the Korea government(MSIP) (No. 2017R1C1B2012918), POSCO Science Fellowship of POSCO TJ Park Foundation, and Yonsei University Research Fund of 2019-22-02. Seok-Bae Yun is supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1801-02

The global Cauchy problem for a local alignment model with a relaxational inter-particle interaction operator is considered. More precisely, we consider the global-in-time existence of weak solutions of BGK model with local velocity-alignment term when the initial data have finite mass, momentum, energy, and entropy. The analysis involves weak/strong compactness based on the velocity moments estimates and several velocity-weighted $ L^\infty $ estimates.

Citation: Young-Pil Choi, Seok-Bae Yun. A BGK kinetic model with local velocity alignment forces. Networks & Heterogeneous Media, 2020, 15 (3) : 389-404. doi: 10.3934/nhm.2020024
References:
[1]

J. Bang and S.-B. Yun, Stationary solutions for the ellipsoidal BGK model in a slab, J. Differential Equations, 261 (2016), 5803-5828.  doi: 10.1016/j.jde.2016.08.022.  Google Scholar

[2]

A. Bellouquid, Global existence and large-time behavior for BGK model for a gas with non-constant cross section, Transport Theory Statist. Phys., 32 (2003), 157-184.  doi: 10.1081/TT-120019041.  Google Scholar

[3]

P. L. BhatnagarE. P. Gross and M. Krook, A model for collision processes in gases. I. Small amplitude process in charged and neutral one-component systems, Phys. Rev., 94 (1954), 511-525.   Google Scholar

[4]

J. A. CarrilloY.-P. Choi and S. P. Pérez, A review on attractive-repulsive hydrodynamics for consensus in collective behavior, Active Particles, Advances in Theory, Models, and Applications, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, 1 (2017), 259-298.   Google Scholar

[5]

J. A. CarrilloM. FornasierJ. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236.  doi: 10.1137/090757290.  Google Scholar

[6]

Y.-P. Choi, Global classical solutions of the Vlasov-Fokker-Planck equation with local alignment forces, Nonlinearity, 29 (2016), 1887-1916.  doi: 10.1088/0951-7715/29/7/1887.  Google Scholar

[7]

Y.-P. Choi, Uniform-in-time bound for kinetic flocking models, Appl. Math. Lett., 103 (2020), 106164, 9 pp. doi: 10.1016/j.aml.2019.106164.  Google Scholar

[8]

Y.-P. Choi, J. Lee and S.-B. Yun, Strong solutions to the inhomogeneous Navier-Stokes-BGK system, Nonlinear Anal. Real World Appl., 57 (2021), 103196. doi: 10.1016/j.nonrwa.2020.103196.  Google Scholar

[9]

Y.-P. Choi and S.-B. Yun, Existence and hydrodynamic limit for a Paveri-Fontana type kinetic traffic model, preprint, arXiv: 1911.05572. Google Scholar

[10]

Y.-P. Choi and S.-B. Yun, Global existence of weak solutions for Navier-Stokes-BGK system, Nonlinearity, 33 (2020), 1925-1955.  doi: 10.1088/1361-6544/ab6c38.  Google Scholar

[11]

Y.-P. ChoiS.-Y. Ha and Z. Li, Emergent dynamics of the Cucker-Smale flocking model and its variants, Active Particles, Advances in Theory, Models, and Applications, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, 1 (2017), 299-331.   Google Scholar

[12]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[13]

F. GolseP.-L. LionsB. Perthame and R. Sentis, Regularity of the moments of the solution of a transport equation, J. Funct. Anal., 76 (1998), 110-125.  doi: 10.1016/0022-1236(88)90051-1.  Google Scholar

[14]

S.-Y. Ha and J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Comm. Math. Sci., 7 (2009), 297-325.  doi: 10.4310/CMS.2009.v7.n2.a2.  Google Scholar

[15]

S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinetic Relat. Models, 1 (2008), 415-435.  doi: 10.3934/krm.2008.1.415.  Google Scholar

[16]

T. K. KarperA. Mellet and K. Trivisa, On strong local alignment in the kinetic Cucker-Smale model, Hyperbolic Conservation Laws and Related Analysis with Applications, Springer Proc. Math. Stat., Springer, Heidelberg, 49 (2014), 227-242.  doi: 10.1007/978-3-642-39007-4_11.  Google Scholar

[17]

T. K. KarperA. Mellet and K. Trivisa, Hydrodynamic limit of the kinetic Cucker-Smale flocking model, Math. Models Methods Appl. Sci., 25 (2015), 131-163.  doi: 10.1142/S0218202515500050.  Google Scholar

[18]

S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 144 (2011), 923-947.  doi: 10.1007/s10955-011-0285-9.  Google Scholar

[19]

S. J. Park and S.-B. Yun, Cauchy problem for ellipsoidal BGK model for polyatomic particles, J. Differential Equations, 266 (2019), 7678-7708.  doi: 10.1016/j.jde.2018.12.013.  Google Scholar

[20]

S.-L. Paveri-Fontana, On Boltzmann-like treatments for traffic flow: A critical review of the basic model and an alternative proposal for dilute traffic analysis, Transport. Res., 9 (1975), 225-235.  doi: 10.1016/0041-1647(75)90063-5.  Google Scholar

[21]

B. Perthame, Global existence to the BGK model of Boltzmann equation, J. Differential Equations, 82 (1989), 191-205.  doi: 10.1016/0022-0396(89)90173-3.  Google Scholar

[22]

B. Perthame and M. Pulvirenti, Weighted $L^\infty$ bounds and uniqueness for the Boltzmann BGK model, Arch. Rational Mech. Anal., 125 (1993), 289-295.  doi: 10.1007/BF00383223.  Google Scholar

[23]

S. Ukai, Stationary solutions of the BGK model equation on a finite interval with large boundary data, Transport theory Statist. Phys., 21 (1992), 487-500.  doi: 10.1080/00411459208203795.  Google Scholar

[24]

S.-B. Yun, Cauchy problem for the Boltzmann-BGK model near a global Maxwellian, J. Math. Phys., 51 (2010), 123514, 24 pp. doi: 10.1063/1.3516479.  Google Scholar

[25]

S.-B. Yun, Classical solutions for the ellipsoidal BGK model with fixed collision frequency, J. Differential Equations, 259 (2015), 6009-6037.  doi: 10.1016/j.jde.2015.07.016.  Google Scholar

[26]

S.-B. Yun, Ellipsoidal BGK model for polyatomic molecules near Maxwellians: A dichotomy in the dissipation estimate, J. Differential Equations, 266 (2019), 5566-5614.  doi: 10.1016/j.jde.2018.10.036.  Google Scholar

[27]

S.-B. Yun, Ellipsoidal BGK model near a global Maxwellian, SIAM J. Math. Anal., 47 (2015), 2324-2354.  doi: 10.1137/130932399.  Google Scholar

[28]

X. Zhang, On the Cauchy problem of the Vlasov-Posson-BGK system: Global existence of weak solutions, J. Stat. Phys., 141 (2010), 566-588.  doi: 10.1007/s10955-010-0064-z.  Google Scholar

[29]

X. Zhang and S. Hu, $L^p$ solutions to the Cauchy problem of the BGK equation, J. Math. Phys., 48 (2007), 113304, 17 pp. doi: 10.1063/1.2816261.  Google Scholar

show all references

References:
[1]

J. Bang and S.-B. Yun, Stationary solutions for the ellipsoidal BGK model in a slab, J. Differential Equations, 261 (2016), 5803-5828.  doi: 10.1016/j.jde.2016.08.022.  Google Scholar

[2]

A. Bellouquid, Global existence and large-time behavior for BGK model for a gas with non-constant cross section, Transport Theory Statist. Phys., 32 (2003), 157-184.  doi: 10.1081/TT-120019041.  Google Scholar

[3]

P. L. BhatnagarE. P. Gross and M. Krook, A model for collision processes in gases. I. Small amplitude process in charged and neutral one-component systems, Phys. Rev., 94 (1954), 511-525.   Google Scholar

[4]

J. A. CarrilloY.-P. Choi and S. P. Pérez, A review on attractive-repulsive hydrodynamics for consensus in collective behavior, Active Particles, Advances in Theory, Models, and Applications, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, 1 (2017), 259-298.   Google Scholar

[5]

J. A. CarrilloM. FornasierJ. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236.  doi: 10.1137/090757290.  Google Scholar

[6]

Y.-P. Choi, Global classical solutions of the Vlasov-Fokker-Planck equation with local alignment forces, Nonlinearity, 29 (2016), 1887-1916.  doi: 10.1088/0951-7715/29/7/1887.  Google Scholar

[7]

Y.-P. Choi, Uniform-in-time bound for kinetic flocking models, Appl. Math. Lett., 103 (2020), 106164, 9 pp. doi: 10.1016/j.aml.2019.106164.  Google Scholar

[8]

Y.-P. Choi, J. Lee and S.-B. Yun, Strong solutions to the inhomogeneous Navier-Stokes-BGK system, Nonlinear Anal. Real World Appl., 57 (2021), 103196. doi: 10.1016/j.nonrwa.2020.103196.  Google Scholar

[9]

Y.-P. Choi and S.-B. Yun, Existence and hydrodynamic limit for a Paveri-Fontana type kinetic traffic model, preprint, arXiv: 1911.05572. Google Scholar

[10]

Y.-P. Choi and S.-B. Yun, Global existence of weak solutions for Navier-Stokes-BGK system, Nonlinearity, 33 (2020), 1925-1955.  doi: 10.1088/1361-6544/ab6c38.  Google Scholar

[11]

Y.-P. ChoiS.-Y. Ha and Z. Li, Emergent dynamics of the Cucker-Smale flocking model and its variants, Active Particles, Advances in Theory, Models, and Applications, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, 1 (2017), 299-331.   Google Scholar

[12]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[13]

F. GolseP.-L. LionsB. Perthame and R. Sentis, Regularity of the moments of the solution of a transport equation, J. Funct. Anal., 76 (1998), 110-125.  doi: 10.1016/0022-1236(88)90051-1.  Google Scholar

[14]

S.-Y. Ha and J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Comm. Math. Sci., 7 (2009), 297-325.  doi: 10.4310/CMS.2009.v7.n2.a2.  Google Scholar

[15]

S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinetic Relat. Models, 1 (2008), 415-435.  doi: 10.3934/krm.2008.1.415.  Google Scholar

[16]

T. K. KarperA. Mellet and K. Trivisa, On strong local alignment in the kinetic Cucker-Smale model, Hyperbolic Conservation Laws and Related Analysis with Applications, Springer Proc. Math. Stat., Springer, Heidelberg, 49 (2014), 227-242.  doi: 10.1007/978-3-642-39007-4_11.  Google Scholar

[17]

T. K. KarperA. Mellet and K. Trivisa, Hydrodynamic limit of the kinetic Cucker-Smale flocking model, Math. Models Methods Appl. Sci., 25 (2015), 131-163.  doi: 10.1142/S0218202515500050.  Google Scholar

[18]

S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 144 (2011), 923-947.  doi: 10.1007/s10955-011-0285-9.  Google Scholar

[19]

S. J. Park and S.-B. Yun, Cauchy problem for ellipsoidal BGK model for polyatomic particles, J. Differential Equations, 266 (2019), 7678-7708.  doi: 10.1016/j.jde.2018.12.013.  Google Scholar

[20]

S.-L. Paveri-Fontana, On Boltzmann-like treatments for traffic flow: A critical review of the basic model and an alternative proposal for dilute traffic analysis, Transport. Res., 9 (1975), 225-235.  doi: 10.1016/0041-1647(75)90063-5.  Google Scholar

[21]

B. Perthame, Global existence to the BGK model of Boltzmann equation, J. Differential Equations, 82 (1989), 191-205.  doi: 10.1016/0022-0396(89)90173-3.  Google Scholar

[22]

B. Perthame and M. Pulvirenti, Weighted $L^\infty$ bounds and uniqueness for the Boltzmann BGK model, Arch. Rational Mech. Anal., 125 (1993), 289-295.  doi: 10.1007/BF00383223.  Google Scholar

[23]

S. Ukai, Stationary solutions of the BGK model equation on a finite interval with large boundary data, Transport theory Statist. Phys., 21 (1992), 487-500.  doi: 10.1080/00411459208203795.  Google Scholar

[24]

S.-B. Yun, Cauchy problem for the Boltzmann-BGK model near a global Maxwellian, J. Math. Phys., 51 (2010), 123514, 24 pp. doi: 10.1063/1.3516479.  Google Scholar

[25]

S.-B. Yun, Classical solutions for the ellipsoidal BGK model with fixed collision frequency, J. Differential Equations, 259 (2015), 6009-6037.  doi: 10.1016/j.jde.2015.07.016.  Google Scholar

[26]

S.-B. Yun, Ellipsoidal BGK model for polyatomic molecules near Maxwellians: A dichotomy in the dissipation estimate, J. Differential Equations, 266 (2019), 5566-5614.  doi: 10.1016/j.jde.2018.10.036.  Google Scholar

[27]

S.-B. Yun, Ellipsoidal BGK model near a global Maxwellian, SIAM J. Math. Anal., 47 (2015), 2324-2354.  doi: 10.1137/130932399.  Google Scholar

[28]

X. Zhang, On the Cauchy problem of the Vlasov-Posson-BGK system: Global existence of weak solutions, J. Stat. Phys., 141 (2010), 566-588.  doi: 10.1007/s10955-010-0064-z.  Google Scholar

[29]

X. Zhang and S. Hu, $L^p$ solutions to the Cauchy problem of the BGK equation, J. Math. Phys., 48 (2007), 113304, 17 pp. doi: 10.1063/1.2816261.  Google Scholar

[1]

Seok-Bae Yun. Entropy production for ellipsoidal BGK model of the Boltzmann equation. Kinetic & Related Models, 2016, 9 (3) : 605-619. doi: 10.3934/krm.2016009

[2]

Carlota M. Cuesta, Sabine Hittmeir, Christian Schmeiser. Weak shocks of a BGK kinetic model for isentropic gas dynamics. Kinetic & Related Models, 2010, 3 (2) : 255-279. doi: 10.3934/krm.2010.3.255

[3]

Marzia Bisi, Giampiero Spiga. On a kinetic BGK model for slow chemical reactions. Kinetic & Related Models, 2011, 4 (1) : 153-167. doi: 10.3934/krm.2011.4.153

[4]

Gi-Chan Bae, Christian Klingenberg, Marlies Pirner, Seok-Bae Yun. BGK model of the multi-species Uehling-Uhlenbeck equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020047

[5]

Seung-Yeal Ha, Bingkang Huang, Qinghua Xiao, Xiongtao Zhang. A global existence of classical solutions to the two-dimensional kinetic-fluid model for flocking with large initial data. Communications on Pure & Applied Analysis, 2020, 19 (2) : 835-882. doi: 10.3934/cpaa.2020039

[6]

Chiun-Chuan Chen, Seung-Yeal Ha, Xiongtao Zhang. The global well-posedness of the kinetic Cucker-Smale flocking model with chemotactic movements. Communications on Pure & Applied Analysis, 2018, 17 (2) : 505-538. doi: 10.3934/cpaa.2018028

[7]

Rong Yang, Li Chen. Mean-field limit for a collision-avoiding flocking system and the time-asymptotic flocking dynamics for the kinetic equation. Kinetic & Related Models, 2014, 7 (2) : 381-400. doi: 10.3934/krm.2014.7.381

[8]

Alexander V. Bobylev, Marzia Bisi, Maria Groppi, Giampiero Spiga, Irina F. Potapenko. A general consistent BGK model for gas mixtures. Kinetic & Related Models, 2018, 11 (6) : 1377-1393. doi: 10.3934/krm.2018054

[9]

Lining Ru, Xiaoping Xue. Flocking of Cucker-Smale model with intrinsic dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6817-6835. doi: 10.3934/dcdsb.2019168

[10]

Michael Herty, Gabriella Puppo, Sebastiano Roncoroni, Giuseppe Visconti. The BGK approximation of kinetic models for traffic. Kinetic & Related Models, 2020, 13 (2) : 279-307. doi: 10.3934/krm.2020010

[11]

Anaïs Crestetto, Nicolas Crouseilles, Mohammed Lemou. Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles. Kinetic & Related Models, 2012, 5 (4) : 787-816. doi: 10.3934/krm.2012.5.787

[12]

Reiner Henseler, Michael Herrmann, Barbara Niethammer, Juan J. L. Velázquez. A kinetic model for grain growth. Kinetic & Related Models, 2008, 1 (4) : 591-617. doi: 10.3934/krm.2008.1.591

[13]

Karsten Matthies, George Stone, Florian Theil. The derivation of the linear Boltzmann equation from a Rayleigh gas particle model. Kinetic & Related Models, 2018, 11 (1) : 137-177. doi: 10.3934/krm.2018008

[14]

Armando Majorana. A numerical model of the Boltzmann equation related to the discontinuous Galerkin method. Kinetic & Related Models, 2011, 4 (1) : 139-151. doi: 10.3934/krm.2011.4.139

[15]

Byung-Hoon Hwang, Seok-Bae Yun. Stationary solutions to the boundary value problem for the relativistic BGK model in a slab. Kinetic & Related Models, 2019, 12 (4) : 749-764. doi: 10.3934/krm.2019029

[16]

Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361

[17]

Seung-Yeal Ha, Dohyun Kim, Jaeseung Lee, Se Eun Noh. Emergent dynamics of an orientation flocking model for multi-agent system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (4) : 2037-2060. doi: 10.3934/dcds.2020105

[18]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[19]

Seung-Yeal Ha, Jinwook Jung, Peter Kuchling. Emergence of anomalous flocking in the fractional Cucker-Smale model. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5465-5489. doi: 10.3934/dcds.2019223

[20]

Chun-Hsien Li, Suh-Yuh Yang. A new discrete Cucker-Smale flocking model under hierarchical leadership. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2587-2599. doi: 10.3934/dcdsb.2016062

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (43)
  • HTML views (48)
  • Cited by (0)

Other articles
by authors

[Back to Top]