[1]
|
Crowding and queuing at entrances, (2018), http://ped.fz-juelich.de/da/doku.php?id=wuptmp.
|
[2]
|
Jupedsim, (2019), https://www.jupedsim.org.
|
[3]
|
J. Adrian, M. Boltes, S. Holl, A. Sieben and A. Seyfried, Crowding and queuing in entrance scenarios: Influence of corridor width in front of bottlenecks, arXiv e-prints, arXiv: 1810.07424.
|
[4]
|
A. A. Almet, M. Pan, B. Hughes and K. Landman, When push comes to shove: Exclusion processes with nonlocal consequences, Physica A, 437 (2015), 119-129.
doi: 10.1016/j.physa.2015.05.031.
|
[5]
|
M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1997.
doi: 10.1007/978-0-8176-4755-1.
|
[6]
|
M. Burger, S. Hittmeir, H. Ranetbauer and M.-T. Wolfram, Lane formation by side-stepping, SIAM Journal on Mathematical Analysis, 48 (2016), 981-1005.
doi: 10.1137/15M1033174.
|
[7]
|
M. Burger and J.-F. Pietschmann, Flow characteristics in a crowded transport model, Nonlinearity, 29 (2016), 3528-3550.
doi: 10.1088/0951-7715/29/11/3528.
|
[8]
|
C. Burstedde, K. Klauck, A. Schadschneider and J. Zittartz, Simulation of pedestrian dynamics using a two-dimensional cellular automaton, Physica A: Statistical Mechanics and its Applications, 295 (2001), 507-525.
doi: 10.1016/S0378-4371(01)00141-8.
|
[9]
|
L. A. Caffarelli and M. G. Crandall, Distance functions and almost global solutions of eikonal equations, Communications in Partial Differential Equations, 35 (2010), 391-414.
doi: 10.1080/03605300903253927.
|
[10]
|
A. Corbetta, J. A. Meeusen, C.-m. Lee, R. Benzi and F. Toschi, Physics-based modeling and data representation of pairwise interactions among pedestrians, Physical Review E, 98 (2018), 062310.
doi: 10.1103/PhysRevE.98.062310.
|
[11]
|
E. Cristiani, B. Piccoli and A. Tosin, Multiscale Modeling of Pedestrian Dynamics, MS & A, Modeling, Simulation and Applications, 12. Springer, Cham, 2014.
doi: 10.1007%2F978-3-319-06620-2.
|
[12]
|
M. Di Francesco, P. Markowich, J.-F. Pietschmann and M.-T. Wolfram, On the Hughes' model for pedestrian flow: The one-dimensional case, Journal of Differential Equations, 250 (2011), 1334-1362.
doi: 10.1016/j.jde.2010.10.015.
|
[13]
|
D. C. Duives, W. Daamen and S. Hoogendoorn, Trajectory analysis of pedestrian crowd movements at a Dutch music festival, Pedestrian and Evacuation Dynamics 2012, Springer, (2014), 151–166.
doi: 10.1007/978-3-319-02447-9_11.
|
[14]
|
S. N. Gomes, A. M. Stuart and M.-T. Wolfram, Parameter estimation for macroscopic pedestrian dynamics models from microscopic data, SIAM Journal on Applied Mathematics, 79 (2019), 1475-1500.
doi: 10.1137/18M1215980.
|
[15]
|
B. Hein, Agent-Based Modelling for Crowding and Queuing in Front of Bottlenecks, Bachelor's Thesis, University of Wuppertal, 2019.
|
[16]
|
D. Helbing and P. Molnár, Social force model for pedestrian dynamics, Physical Review E, 51 (1995), 4282.
doi: 10.1103/PhysRevE.51.4282.
|
[17]
|
K. Hirai and K. Tarui, A simulation of the behavior of a crowd in panic, Systems and Control.
|
[18]
|
R. Hughes, A continuum theory for the flow of pedestrians, Transportation Research Part B: Methodological, 36 (2002), 507-535.
doi: 10.1016/S0191-2615(01)00015-7.
|
[19]
|
A. Johansson and D. Helbing, Analysis of empirical trajectory data of pedestrians, Pedestrian and Evacuation Dynamics 2008, (2009), 203–214.
doi: 10.1007/978-3-642-04504-2_15.
|
[20]
|
A. Jüngel, The boundedness-by-entropy method for cross-diffusion systems, Nonlinearity, 28 (2015), 1963.
|
[21]
|
A. Kirchner and A. Schadschneider, Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics, Physica A: Statistical Mechanics and its Applications, 312 (2002), 260-276.
doi: 10.1016/S0378-4371(02)00857-9.
|
[22]
|
C. Koutschan, H. Ranetbauer, G. Regensburger and M.-T. Wolfram, Symbolic derivation of mean-field PDEs from lattice-based models, 2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 27–33.
doi: 10.1109/SYNASC.2015.14.
|
[23]
|
O. Ladyzhenskaya, Linear and Quasilinear Elliptic Equations, ISSN, Elsevier Science, 1968.
|
[24]
|
P. LeFloch, Explicit formula for scalar nonlinear conservation laws with boundary condition, Mathematical Methods in the Applied Sciences, 10 (1988), 265-287.
doi: 10.1002/mma.1670100305.
|
[25]
|
P. LeFloch and J.-C. Nédélec, Explicit formula for weighted scalar nonlinear hyperbolic conservation laws, Transactions of the American Mathematical Society, 308 (1988), 667-683.
doi: 10.1090/S0002-9947-1988-0951622-X.
|
[26]
|
C. Lehrenfeld, On a Space-Time Extended Finite Element Method for the Solution of a Class of Two-Phase Mass Transport Problems, PhD thesis, RWTH Aachen, 2015, http://publications.rwth-aachen.de/record/462743.
|
[27]
|
A. Y. Leroux, Approximation de Quelques Problèmes Hyperboliques Non-Linéaires, Thèse d'état, Rennes, 1979.
|
[28]
|
B. Maury and S. Faure, Crowds in Equations. An Introduction to the Microscopic Modeling of Crowds, Advanced Textbooks in Mathematics. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2019.
|
[29]
|
M. Moussaïd, D. Helbing, S. Garnier, A. Johansson, M. Combe and G. Theraulaz, Experimental study of the behavioural mechanisms underlying self-organization in human crowds, Proceedings of The Royal Society B: Biological Sciences, 276 (2009), 2755-2762.
doi: 10.1098/rspb.2009.0405.
|
[30]
|
S. Nowak and A. Schadschneider, Quantitative analysis of pedestrian counterflow in a cellular automaton model, Physical Review E, 85 (2012), 066128.
doi: 10.1103/PhysRevE.85.066128.
|
[31]
|
S. Okazaki, A study of pedestrian movement in architectural space, Trans. of A.I.J., 283.
|
[32]
|
B. Piccoli and A. Tosin, Time-evolving measures and macroscopic modeling of pedestrian flow, Archive for Rational Mechanics and Analysis, 199 (2011), 707-738.
doi: 10.1007/s00205-010-0366-y.
|
[33]
|
J. Qian, Y.-T. Zhang and H.-K. Zhao, Fast sweeping methods for eikonal equations on triangular meshes, SIAM J. Numerical Analysis, 45 (2007), 83-107.
doi: 10.1137/050627083.
|
[34]
|
C. Rudloff, T. Matyus and S. Seer, Comparison of different calibration techniques on simulated data, Pedestrian and Evacuation Dynamics 2012, Springer, (2013), 657–672.
doi: 10.1007/978-3-319-02447-9_55.
|
[35]
|
A. Schadschneider, C. Eilhardt, S. Nowak and R. Will, Towards a calibration of the floor field cellular automaton, Pedestrian and Evacuation Dynamics, (2011), 557–566.
doi: 10.1007/978-1-4419-9725-8_50.
|
[36]
|
A. Schadschneider, H. Klpfel, T. Kretz, C. Rogsch and A. Seyfried, Fundamentals of pedestrian and evacuation dynamics, IGI Global, (2009), 124–154.
|
[37]
|
M. Twarogowska, P. Goatin and R. Duvigneau, Comparative study of macroscopic pedestrian models, Transportation Research Procedia, 2 (2014), 477-485.
doi: 10.1016/j.trpro.2014.09.063.
|
[38]
|
U. Weidmann, Transporttechnik der Fussgänger: Transporttechnische Eigenschaften des Fussgängerverkehrs, Schriftenreihe des IVT, IVT, 1993.
|
[39]
|
W. G. Weng, T. Chen, H. Y. Yuan and W. C. Fan, Cellular automaton simulation of pedestrian counter flow with different walk velocities, Physical Review. E, 74 (2006), 036102.
doi: 10.1103/PhysRevE.74.036102.
|
[40]
|
C. A. Yates, A. Parker and R. E. Baker, Incorporating pushing in exclusion-process models of cell migration, Physical Review E, 91 (2015), 052711.
doi: 10.1103/PhysRevE.91.052711.
|