We study measurable stationary solutions for the kinetic Kuramoto-Sakaguchi (in short K-S) equation with frustration and their stability analysis. In the presence of frustration, the total phase is not a conserved quantity anymore, but it is time-varying. Thus, we can not expect the genuinely stationary solutions for the K-S equation. To overcome this lack of conserved quantity, we introduce new variables whose total phase is conserved. In the transformed K-S equation in new variables, we derive all measurable stationary solution representing the incoherent state, complete and partial phase-locked states. We also provide several frameworks in which the complete phase-locked state is stable, whereas partial phase-locked state is semi-stable in the space of Radon measures. In particular, we show that the incoherent state is nonlinearly stable in a large frustration regime, whereas it can exhibit stable behavior or concentration phenomenon in a small frustration regime.
Citation: |
[1] |
J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente, F. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137-185.
doi: 10.1103/RevModPhys.77.137.![]() ![]() |
[2] |
M. Brede and A. C. Kalloniatis, Frustration tuning and perfect phase synchronization in the Kuramoto-Sakaguchi model, Phys. Rev. E, 93 (2016), 13pp.
doi: 10.1103/physreve.93.062315.![]() ![]() ![]() |
[3] |
J. A. Carrillo, Y.-P. Choi, S.-Y. Ha, M.-J. Kang and Y. Kim, Contractivity of transport distances for the kinetic Kuramoto equation, J. Stat. Phys., 156 (2014), 395-415.
doi: 10.1007/s10955-014-1005-z.![]() ![]() ![]() |
[4] |
H. Chiba, A proof of the Kuramoto conjecture for a bifurcation structure of the infinite-dimensional Kuramoto model, Ergodic Theory Dynam. Systems, 35 (2015), 762-834.
doi: 10.1017/etds.2013.68.![]() ![]() ![]() |
[5] |
N. Chopra and M. W. Spong, On exponential synchronization of Kuramoto oscillators, IEEE Trans. Automat. Control, 54 (2009), 353-357.
doi: 10.1109/TAC.2008.2007884.![]() ![]() ![]() |
[6] |
H. Daido, Quasientrainment and slow relaxation in a population of oscillators with random and frustrated interactions, Phys. Rev. Lett., 68 (1992), 1073-1076.
doi: 10.1103/PhysRevLett.68.1073.![]() ![]() |
[7] |
F. De Smet and D. Aeyels, Partial entrainment in the finite Kuramoto-Sakaguchi model, Phys. D, 234 (2007), 81-89.
doi: 10.1016/j.physd.2007.06.025.![]() ![]() ![]() |
[8] |
J.-G. Dong and X. Xue, Synchronization analysis of Kuramoto oscillators, Commun. Math. Sci., 11 (2013), 465-480.
doi: 10.4310/CMS.2013.v11.n2.a7.![]() ![]() ![]() |
[9] |
F. Dörfler and F. Bullo, Synchronization and transient stability in power networks and nonuniform Kuramoto oscillators, SIAM J. Control Optim., 50 (2012), 1616-1642.
doi: 10.1137/110851584.![]() ![]() ![]() |
[10] |
F. Dörfler and F. Bullo, Synchronization in complex networks of phase oscillators: A survey, Automatica J. IFAC, 50 (2014), 1539-1564.
doi: 10.1016/j.automatica.2014.04.012.![]() ![]() ![]() |
[11] |
S.-Y. Ha, D. Kim, J. Lee and Y. Zhang, Remarks on the stability properties of the Kuramoto-Sakaguchi-Fokker-Planck equation with frustration, Z. Angew. Math. Phys., 69 (2018), 25pp.
doi: 10.1007/s00033-018-0984-z.![]() ![]() ![]() |
[12] |
S.-Y. Ha, Y. Kim and Z. Li, Asymptotic synchronous behavior of Kuramoto type models with frustrations, Netw. Heterog. Media, 9 (2014), 33-64.
doi: 10.3934/nhm.2014.9.33.![]() ![]() ![]() |
[13] |
S.-Y. Ha, Y. Kim and Z. Li, Large-time dynamics of Kuramoto oscillators under the effects of inertia and frustration, SIAM J. Appl. Dyn. Syst., 13 (2014), 466-492.
doi: 10.1137/130926559.![]() ![]() ![]() |
[14] |
S.-Y. Ha, H. K. Kim and J. Park, Remarks on the complete synchronization of Kuramoto oscillators, Nonlinearity, 28 (2015), 1441-1462.
doi: 10.1088/0951-7715/28/5/1441.![]() ![]() ![]() |
[15] |
S.-Y. Ha, H. K. Kim and S. W. Ryoo, Emergence of phase-locked states for the Kuramoto model in a large coupling regime, Commun. Math. Sci., 14 (2016), 1073-1091.
doi: 10.4310/CMS.2016.v14.n4.a10.![]() ![]() ![]() |
[16] |
S.-Y. Ha, D. Ko and Y. Zhang, Emergence of phase-locking in the Kuramoto model for identical oscillators with frustration, SIAM J. Appl. Dyn. Syst., 17 (2018), 581-625.
doi: 10.1137/17M1112959.![]() ![]() ![]() |
[17] |
S.-Y. Ha, Z. Li and X. Xue, Formation of phase-locked states in a population of locally interacting Kuramoto oscillators, J. Differential Equations, 255 (2013), 3053-3070.
doi: 10.1016/j.jde.2013.07.013.![]() ![]() ![]() |
[18] |
S.-Y. Ha, J. Li and Y. Zhang, Robustness in the instability of the incoherent state for the Kuramoto-Sakaguchi-Fokker-Planck equation with frustration, Quart. Appl. Math., 77 (2019), 631-654.
doi: 10.1090/qam/1533.![]() ![]() ![]() |
[19] |
S.-Y. Ha and Q. Xiao, Remarks on the nonlinear stability of the Kuramoto-Sakaguchi equation, J. Differential Equations, 259 (2015), 2430-2457.
doi: 10.1016/j.jde.2015.03.038.![]() ![]() ![]() |
[20] |
Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer Series in Synergetics, 19, Springer-Verlag, Berlin, 1984.
doi: 10.1007/978-3-642-69689-3.![]() ![]() ![]() |
[21] |
Y. Kuramoto, International Symposium on Mathematical Problems in Mathematical Physics, Lecture Notes in Physics, 39, Springer-Verlag, Berlin, 1975.
![]() |
[22] |
Z. Levnajić, Emergent multistability and frustration in phase-repulsive networks of oscillators, Phys. Rev. E, 84 (2011).
doi: 10.1103/PhysRevE.84.016231.![]() ![]() |
[23] |
Z. Li and S.-Y. Ha, Uniqueness and well-ordering of emergent phase-locked states for the Kuramoto model with frustration and inertia, Math. Models Methods Appl. Sci., 26 (2016), 357-382.
doi: 10.1142/S0218202516400054.![]() ![]() ![]() |
[24] |
R. Mirollo and S. H. Strogatz, The spectrum of the partially locked state for the Kuramoto model, J. Nonlinear Sci., 17 (2017), 309-347.
doi: 10.1007/s00332-006-0806-x.![]() ![]() ![]() |
[25] |
E. Oh, C. Choi, B. Kahng and D. Kim, Modular synchronization in complex networks with a gauge Kuramoto model, EPL, 83 (2008).
doi: 10.1209/0295-5075/83/68003.![]() ![]() |
[26] |
K. Park, S. W. Rhee and M. Y. Choi, Glass synchronization in the network of oscillators with random phase shifts, Phys. Rev. E, 57 (1998), 5030-5035.
doi: 10.1103/PhysRevE.57.5030.![]() ![]() |
[27] |
A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization. A Universal Concept in Nonlinear Sciences, Cambridge Nonlinear Science Series, 12, Cambridge University Press, Cambridge, 2001.
doi: 10.1017/CBO9780511755743.![]() ![]() ![]() |
[28] |
H. Sakaguchi, Cooperative phenomena in coupled oscillator systems sunder external fields, Prog. Theoret. Phys., 79 (1988), 39-46.
doi: 10.1143/PTP.79.39.![]() ![]() ![]() |
[29] |
H. Sakaguchi and Y. Kuramoto, A soluble active rotator model showing phase transitions via mutual entraintment, Progr. Theoret. Phys., 76 (1986), 576-581.
doi: 10.1143/PTP.76.576.![]() ![]() ![]() |
[30] |
S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Phys. D, 143 (2000), 1-20.
doi: 10.1016/S0167-2789(00)00094-4.![]() ![]() ![]() |
[31] |
S. H. Strogatz and R. E. Mirollo, Stability of incoherence in a population of coupled oscillators, J. Statist. Phys., 63 (1991), 613-635.
doi: 10.1007/BF01029202.![]() ![]() ![]() |
[32] |
A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1967), 15-42.
doi: 10.1016/0022-5193(67)90051-3.![]() ![]() |
[33] |
Z.-G. Zheng, Frustration effect on synchronization and chaos in coupled oscillators, Chin. Phys. Soc., 10 (2001), 703-707.
doi: 10.1088/1009-1963/10/8/306.![]() ![]() |