September  2020, 15(3): 427-461. doi: 10.3934/nhm.2020026

Nonlinear stability of stationary solutions to the Kuramoto-Sakaguchi equation with frustration

1. 

Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, Seoul 08826, Republic of Korea

2. 

Korea Institute for Advanced Study, Hoegiro 85, Seoul, 02455, Republic of Korea

3. 

Department of Mathematical Sciences, Seoul National University, Seoul 08826, Republic of Korea

4. 

Stochastic Analysis and Application Research Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea

Received  August 2019 Revised  May 2020 Published  September 2020

Fund Project: The work of S.-Y. Ha is supported by the National Research Foundation of Korea(NRF) Grant (No. NRF-2020R1A2C3A01003881). The work of Y. Zhang is supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. NRF-2017R1A5A1015626 and NRF-2019R1A5A1028324)

We study measurable stationary solutions for the kinetic Kuramoto-Sakaguchi (in short K-S) equation with frustration and their stability analysis. In the presence of frustration, the total phase is not a conserved quantity anymore, but it is time-varying. Thus, we can not expect the genuinely stationary solutions for the K-S equation. To overcome this lack of conserved quantity, we introduce new variables whose total phase is conserved. In the transformed K-S equation in new variables, we derive all measurable stationary solution representing the incoherent state, complete and partial phase-locked states. We also provide several frameworks in which the complete phase-locked state is stable, whereas partial phase-locked state is semi-stable in the space of Radon measures. In particular, we show that the incoherent state is nonlinearly stable in a large frustration regime, whereas it can exhibit stable behavior or concentration phenomenon in a small frustration regime.

Citation: Seung-Yeal Ha, Hansol Park, Yinglong Zhang. Nonlinear stability of stationary solutions to the Kuramoto-Sakaguchi equation with frustration. Networks & Heterogeneous Media, 2020, 15 (3) : 427-461. doi: 10.3934/nhm.2020026
References:
[1]

J. A. AcebrónL. L. BonillaC. J. Pérez VicenteF. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137-185.  doi: 10.1103/RevModPhys.77.137.  Google Scholar

[2]

M. Brede and A. C. Kalloniatis, Frustration tuning and perfect phase synchronization in the Kuramoto-Sakaguchi model, Phys. Rev. E, 93 (2016), 13pp. doi: 10.1103/physreve.93.062315.  Google Scholar

[3]

J. A. CarrilloY.-P. ChoiS.-Y. HaM.-J. Kang and Y. Kim, Contractivity of transport distances for the kinetic Kuramoto equation, J. Stat. Phys., 156 (2014), 395-415.  doi: 10.1007/s10955-014-1005-z.  Google Scholar

[4]

H. Chiba, A proof of the Kuramoto conjecture for a bifurcation structure of the infinite-dimensional Kuramoto model, Ergodic Theory Dynam. Systems, 35 (2015), 762-834.  doi: 10.1017/etds.2013.68.  Google Scholar

[5]

N. Chopra and M. W. Spong, On exponential synchronization of Kuramoto oscillators, IEEE Trans. Automat. Control, 54 (2009), 353-357.  doi: 10.1109/TAC.2008.2007884.  Google Scholar

[6]

H. Daido, Quasientrainment and slow relaxation in a population of oscillators with random and frustrated interactions, Phys. Rev. Lett., 68 (1992), 1073-1076.  doi: 10.1103/PhysRevLett.68.1073.  Google Scholar

[7]

F. De Smet and D. Aeyels, Partial entrainment in the finite Kuramoto-Sakaguchi model, Phys. D, 234 (2007), 81-89.  doi: 10.1016/j.physd.2007.06.025.  Google Scholar

[8]

J.-G. Dong and X. Xue, Synchronization analysis of Kuramoto oscillators, Commun. Math. Sci., 11 (2013), 465-480.  doi: 10.4310/CMS.2013.v11.n2.a7.  Google Scholar

[9]

F. Dörfler and F. Bullo, Synchronization and transient stability in power networks and nonuniform Kuramoto oscillators, SIAM J. Control Optim., 50 (2012), 1616-1642.  doi: 10.1137/110851584.  Google Scholar

[10]

F. Dörfler and F. Bullo, Synchronization in complex networks of phase oscillators: A survey, Automatica J. IFAC, 50 (2014), 1539-1564.  doi: 10.1016/j.automatica.2014.04.012.  Google Scholar

[11]

S.-Y. Ha, D. Kim, J. Lee and Y. Zhang, Remarks on the stability properties of the Kuramoto-Sakaguchi-Fokker-Planck equation with frustration, Z. Angew. Math. Phys., 69 (2018), 25pp. doi: 10.1007/s00033-018-0984-z.  Google Scholar

[12]

S.-Y. HaY. Kim and Z. Li, Asymptotic synchronous behavior of Kuramoto type models with frustrations, Netw. Heterog. Media, 9 (2014), 33-64.  doi: 10.3934/nhm.2014.9.33.  Google Scholar

[13]

S.-Y. HaY. Kim and Z. Li, Large-time dynamics of Kuramoto oscillators under the effects of inertia and frustration, SIAM J. Appl. Dyn. Syst., 13 (2014), 466-492.  doi: 10.1137/130926559.  Google Scholar

[14]

S.-Y. HaH. K. Kim and J. Park, Remarks on the complete synchronization of Kuramoto oscillators, Nonlinearity, 28 (2015), 1441-1462.  doi: 10.1088/0951-7715/28/5/1441.  Google Scholar

[15]

S.-Y. HaH. K. Kim and S. W. Ryoo, Emergence of phase-locked states for the Kuramoto model in a large coupling regime, Commun. Math. Sci., 14 (2016), 1073-1091.  doi: 10.4310/CMS.2016.v14.n4.a10.  Google Scholar

[16]

S.-Y. HaD. Ko and Y. Zhang, Emergence of phase-locking in the Kuramoto model for identical oscillators with frustration, SIAM J. Appl. Dyn. Syst., 17 (2018), 581-625.  doi: 10.1137/17M1112959.  Google Scholar

[17]

S.-Y. HaZ. Li and X. Xue, Formation of phase-locked states in a population of locally interacting Kuramoto oscillators, J. Differential Equations, 255 (2013), 3053-3070.  doi: 10.1016/j.jde.2013.07.013.  Google Scholar

[18]

S.-Y. HaJ. Li and Y. Zhang, Robustness in the instability of the incoherent state for the Kuramoto-Sakaguchi-Fokker-Planck equation with frustration, Quart. Appl. Math., 77 (2019), 631-654.  doi: 10.1090/qam/1533.  Google Scholar

[19]

S.-Y. Ha and Q. Xiao, Remarks on the nonlinear stability of the Kuramoto-Sakaguchi equation, J. Differential Equations, 259 (2015), 2430-2457.  doi: 10.1016/j.jde.2015.03.038.  Google Scholar

[20]

Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer Series in Synergetics, 19, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69689-3.  Google Scholar

[21]

Y. Kuramoto, International Symposium on Mathematical Problems in Mathematical Physics, Lecture Notes in Physics, 39, Springer-Verlag, Berlin, 1975. Google Scholar

[22]

Z. Levnajić, Emergent multistability and frustration in phase-repulsive networks of oscillators, Phys. Rev. E, 84 (2011). doi: 10.1103/PhysRevE.84.016231.  Google Scholar

[23]

Z. Li and S.-Y. Ha, Uniqueness and well-ordering of emergent phase-locked states for the Kuramoto model with frustration and inertia, Math. Models Methods Appl. Sci., 26 (2016), 357-382.  doi: 10.1142/S0218202516400054.  Google Scholar

[24]

R. Mirollo and S. H. Strogatz, The spectrum of the partially locked state for the Kuramoto model, J. Nonlinear Sci., 17 (2017), 309-347.  doi: 10.1007/s00332-006-0806-x.  Google Scholar

[25]

E. Oh, C. Choi, B. Kahng and D. Kim, Modular synchronization in complex networks with a gauge Kuramoto model, EPL, 83 (2008). doi: 10.1209/0295-5075/83/68003.  Google Scholar

[26]

K. ParkS. W. Rhee and M. Y. Choi, Glass synchronization in the network of oscillators with random phase shifts, Phys. Rev. E, 57 (1998), 5030-5035.  doi: 10.1103/PhysRevE.57.5030.  Google Scholar

[27] A. PikovskyM. Rosenblum and J. Kurths, Synchronization. A Universal Concept in Nonlinear Sciences, Cambridge Nonlinear Science Series, 12, Cambridge University Press, Cambridge, 2001.  doi: 10.1017/CBO9780511755743.  Google Scholar
[28]

H. Sakaguchi, Cooperative phenomena in coupled oscillator systems sunder external fields, Prog. Theoret. Phys., 79 (1988), 39-46.  doi: 10.1143/PTP.79.39.  Google Scholar

[29]

H. Sakaguchi and Y. Kuramoto, A soluble active rotator model showing phase transitions via mutual entraintment, Progr. Theoret. Phys., 76 (1986), 576-581.  doi: 10.1143/PTP.76.576.  Google Scholar

[30]

S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Phys. D, 143 (2000), 1-20.  doi: 10.1016/S0167-2789(00)00094-4.  Google Scholar

[31]

S. H. Strogatz and R. E. Mirollo, Stability of incoherence in a population of coupled oscillators, J. Statist. Phys., 63 (1991), 613-635.  doi: 10.1007/BF01029202.  Google Scholar

[32]

A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1967), 15-42.  doi: 10.1016/0022-5193(67)90051-3.  Google Scholar

[33]

Z.-G. Zheng, Frustration effect on synchronization and chaos in coupled oscillators, Chin. Phys. Soc., 10 (2001), 703-707.  doi: 10.1088/1009-1963/10/8/306.  Google Scholar

show all references

References:
[1]

J. A. AcebrónL. L. BonillaC. J. Pérez VicenteF. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137-185.  doi: 10.1103/RevModPhys.77.137.  Google Scholar

[2]

M. Brede and A. C. Kalloniatis, Frustration tuning and perfect phase synchronization in the Kuramoto-Sakaguchi model, Phys. Rev. E, 93 (2016), 13pp. doi: 10.1103/physreve.93.062315.  Google Scholar

[3]

J. A. CarrilloY.-P. ChoiS.-Y. HaM.-J. Kang and Y. Kim, Contractivity of transport distances for the kinetic Kuramoto equation, J. Stat. Phys., 156 (2014), 395-415.  doi: 10.1007/s10955-014-1005-z.  Google Scholar

[4]

H. Chiba, A proof of the Kuramoto conjecture for a bifurcation structure of the infinite-dimensional Kuramoto model, Ergodic Theory Dynam. Systems, 35 (2015), 762-834.  doi: 10.1017/etds.2013.68.  Google Scholar

[5]

N. Chopra and M. W. Spong, On exponential synchronization of Kuramoto oscillators, IEEE Trans. Automat. Control, 54 (2009), 353-357.  doi: 10.1109/TAC.2008.2007884.  Google Scholar

[6]

H. Daido, Quasientrainment and slow relaxation in a population of oscillators with random and frustrated interactions, Phys. Rev. Lett., 68 (1992), 1073-1076.  doi: 10.1103/PhysRevLett.68.1073.  Google Scholar

[7]

F. De Smet and D. Aeyels, Partial entrainment in the finite Kuramoto-Sakaguchi model, Phys. D, 234 (2007), 81-89.  doi: 10.1016/j.physd.2007.06.025.  Google Scholar

[8]

J.-G. Dong and X. Xue, Synchronization analysis of Kuramoto oscillators, Commun. Math. Sci., 11 (2013), 465-480.  doi: 10.4310/CMS.2013.v11.n2.a7.  Google Scholar

[9]

F. Dörfler and F. Bullo, Synchronization and transient stability in power networks and nonuniform Kuramoto oscillators, SIAM J. Control Optim., 50 (2012), 1616-1642.  doi: 10.1137/110851584.  Google Scholar

[10]

F. Dörfler and F. Bullo, Synchronization in complex networks of phase oscillators: A survey, Automatica J. IFAC, 50 (2014), 1539-1564.  doi: 10.1016/j.automatica.2014.04.012.  Google Scholar

[11]

S.-Y. Ha, D. Kim, J. Lee and Y. Zhang, Remarks on the stability properties of the Kuramoto-Sakaguchi-Fokker-Planck equation with frustration, Z. Angew. Math. Phys., 69 (2018), 25pp. doi: 10.1007/s00033-018-0984-z.  Google Scholar

[12]

S.-Y. HaY. Kim and Z. Li, Asymptotic synchronous behavior of Kuramoto type models with frustrations, Netw. Heterog. Media, 9 (2014), 33-64.  doi: 10.3934/nhm.2014.9.33.  Google Scholar

[13]

S.-Y. HaY. Kim and Z. Li, Large-time dynamics of Kuramoto oscillators under the effects of inertia and frustration, SIAM J. Appl. Dyn. Syst., 13 (2014), 466-492.  doi: 10.1137/130926559.  Google Scholar

[14]

S.-Y. HaH. K. Kim and J. Park, Remarks on the complete synchronization of Kuramoto oscillators, Nonlinearity, 28 (2015), 1441-1462.  doi: 10.1088/0951-7715/28/5/1441.  Google Scholar

[15]

S.-Y. HaH. K. Kim and S. W. Ryoo, Emergence of phase-locked states for the Kuramoto model in a large coupling regime, Commun. Math. Sci., 14 (2016), 1073-1091.  doi: 10.4310/CMS.2016.v14.n4.a10.  Google Scholar

[16]

S.-Y. HaD. Ko and Y. Zhang, Emergence of phase-locking in the Kuramoto model for identical oscillators with frustration, SIAM J. Appl. Dyn. Syst., 17 (2018), 581-625.  doi: 10.1137/17M1112959.  Google Scholar

[17]

S.-Y. HaZ. Li and X. Xue, Formation of phase-locked states in a population of locally interacting Kuramoto oscillators, J. Differential Equations, 255 (2013), 3053-3070.  doi: 10.1016/j.jde.2013.07.013.  Google Scholar

[18]

S.-Y. HaJ. Li and Y. Zhang, Robustness in the instability of the incoherent state for the Kuramoto-Sakaguchi-Fokker-Planck equation with frustration, Quart. Appl. Math., 77 (2019), 631-654.  doi: 10.1090/qam/1533.  Google Scholar

[19]

S.-Y. Ha and Q. Xiao, Remarks on the nonlinear stability of the Kuramoto-Sakaguchi equation, J. Differential Equations, 259 (2015), 2430-2457.  doi: 10.1016/j.jde.2015.03.038.  Google Scholar

[20]

Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer Series in Synergetics, 19, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69689-3.  Google Scholar

[21]

Y. Kuramoto, International Symposium on Mathematical Problems in Mathematical Physics, Lecture Notes in Physics, 39, Springer-Verlag, Berlin, 1975. Google Scholar

[22]

Z. Levnajić, Emergent multistability and frustration in phase-repulsive networks of oscillators, Phys. Rev. E, 84 (2011). doi: 10.1103/PhysRevE.84.016231.  Google Scholar

[23]

Z. Li and S.-Y. Ha, Uniqueness and well-ordering of emergent phase-locked states for the Kuramoto model with frustration and inertia, Math. Models Methods Appl. Sci., 26 (2016), 357-382.  doi: 10.1142/S0218202516400054.  Google Scholar

[24]

R. Mirollo and S. H. Strogatz, The spectrum of the partially locked state for the Kuramoto model, J. Nonlinear Sci., 17 (2017), 309-347.  doi: 10.1007/s00332-006-0806-x.  Google Scholar

[25]

E. Oh, C. Choi, B. Kahng and D. Kim, Modular synchronization in complex networks with a gauge Kuramoto model, EPL, 83 (2008). doi: 10.1209/0295-5075/83/68003.  Google Scholar

[26]

K. ParkS. W. Rhee and M. Y. Choi, Glass synchronization in the network of oscillators with random phase shifts, Phys. Rev. E, 57 (1998), 5030-5035.  doi: 10.1103/PhysRevE.57.5030.  Google Scholar

[27] A. PikovskyM. Rosenblum and J. Kurths, Synchronization. A Universal Concept in Nonlinear Sciences, Cambridge Nonlinear Science Series, 12, Cambridge University Press, Cambridge, 2001.  doi: 10.1017/CBO9780511755743.  Google Scholar
[28]

H. Sakaguchi, Cooperative phenomena in coupled oscillator systems sunder external fields, Prog. Theoret. Phys., 79 (1988), 39-46.  doi: 10.1143/PTP.79.39.  Google Scholar

[29]

H. Sakaguchi and Y. Kuramoto, A soluble active rotator model showing phase transitions via mutual entraintment, Progr. Theoret. Phys., 76 (1986), 576-581.  doi: 10.1143/PTP.76.576.  Google Scholar

[30]

S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Phys. D, 143 (2000), 1-20.  doi: 10.1016/S0167-2789(00)00094-4.  Google Scholar

[31]

S. H. Strogatz and R. E. Mirollo, Stability of incoherence in a population of coupled oscillators, J. Statist. Phys., 63 (1991), 613-635.  doi: 10.1007/BF01029202.  Google Scholar

[32]

A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1967), 15-42.  doi: 10.1016/0022-5193(67)90051-3.  Google Scholar

[33]

Z.-G. Zheng, Frustration effect on synchronization and chaos in coupled oscillators, Chin. Phys. Soc., 10 (2001), 703-707.  doi: 10.1088/1009-1963/10/8/306.  Google Scholar

[1]

Hirotada Honda. Global-in-time solution and stability of Kuramoto-Sakaguchi equation under non-local Coupling. Networks & Heterogeneous Media, 2017, 12 (1) : 25-57. doi: 10.3934/nhm.2017002

[2]

Xiaoxue Zhao, Zhuchun Li. Synchronization of a Kuramoto-like model for power grids with frustration. Networks & Heterogeneous Media, 2020, 15 (3) : 543-553. doi: 10.3934/nhm.2020030

[3]

Fouad Hadj Selem, Hiroaki Kikuchi, Juncheng Wei. Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4613-4626. doi: 10.3934/dcds.2013.33.4613

[4]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[5]

Fred C. Pinto. Nonlinear stability and dynamical properties for a Kuramoto-Sivashinsky equation in space dimension two. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 117-136. doi: 10.3934/dcds.1999.5.117

[6]

Haifeng Hu, Kaijun Zhang. Stability of the stationary solution of the cauchy problem to a semiconductor full hydrodynamic model with recombination-generation rate. Kinetic & Related Models, 2015, 8 (1) : 117-151. doi: 10.3934/krm.2015.8.117

[7]

Kaïs Ammari, Thomas Duyckaerts, Armen Shirikyan. Local feedback stabilisation to a non-stationary solution for a damped non-linear wave equation. Mathematical Control & Related Fields, 2016, 6 (1) : 1-25. doi: 10.3934/mcrf.2016.6.1

[8]

Yuriy Golovaty, Anna Marciniak-Czochra, Mariya Ptashnyk. Stability of nonconstant stationary solutions in a reaction-diffusion equation coupled to the system of ordinary differential equations. Communications on Pure & Applied Analysis, 2012, 11 (1) : 229-241. doi: 10.3934/cpaa.2012.11.229

[9]

Kiah Wah Ong. Dynamic transitions of generalized Kuramoto-Sivashinsky equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1225-1236. doi: 10.3934/dcdsb.2016.21.1225

[10]

Guillaume Bal, Alexandre Jollivet. Stability estimates in stationary inverse transport. Inverse Problems & Imaging, 2008, 2 (4) : 427-454. doi: 10.3934/ipi.2008.2.427

[11]

Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. Uniform stability and mean-field limit for the augmented Kuramoto model. Networks & Heterogeneous Media, 2018, 13 (2) : 297-322. doi: 10.3934/nhm.2018013

[12]

Milena Stanislavova, Atanas Stefanov. Effective estimates of the higher Sobolev norms for the Kuramoto-Sivashinsky equation. Conference Publications, 2009, 2009 (Special) : 729-738. doi: 10.3934/proc.2009.2009.729

[13]

Jared C. Bronski, Razvan C. Fetecau, Thomas N. Gambill. A note on a non-local Kuramoto-Sivashinsky equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 701-707. doi: 10.3934/dcds.2007.18.701

[14]

Peng Gao. Averaging principle for stochastic Kuramoto-Sivashinsky equation with a fast oscillation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5649-5684. doi: 10.3934/dcds.2018247

[15]

Eduardo Cerpa. Null controllability and stabilization of the linear Kuramoto-Sivashinsky equation. Communications on Pure & Applied Analysis, 2010, 9 (1) : 91-102. doi: 10.3934/cpaa.2010.9.91

[16]

D. Hilhorst, L. A. Peletier, A. I. Rotariu, G. Sivashinsky. Global attractor and inertial sets for a nonlocal Kuramoto-Sivashinsky equation. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 557-580. doi: 10.3934/dcds.2004.10.557

[17]

Yuqian Zhou, Qian Liu. Reduction and bifurcation of traveling waves of the KdV-Burgers-Kuramoto equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 2057-2071. doi: 10.3934/dcdsb.2016036

[18]

Piotr Zgliczyński. Steady state bifurcations for the Kuramoto-Sivashinsky equation: A computer assisted proof. Journal of Computational Dynamics, 2015, 2 (1) : 95-142. doi: 10.3934/jcd.2015.2.95

[19]

Yuncherl Choi, Jongmin Han, Chun-Hsiung Hsia. Bifurcation analysis of the damped Kuramoto-Sivashinsky equation with respect to the period. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1933-1957. doi: 10.3934/dcdsb.2015.20.1933

[20]

Seung-Yeal Ha, Shi Jin, Jinwook Jung. A local sensitivity analysis for the kinetic Kuramoto equation with random inputs. Networks & Heterogeneous Media, 2019, 14 (2) : 317-340. doi: 10.3934/nhm.2019013

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (37)
  • HTML views (57)
  • Cited by (0)

Other articles
by authors

[Back to Top]