September  2020, 15(3): 543-553. doi: 10.3934/nhm.2020030

Synchronization of a Kuramoto-like model for power grids with frustration

1. 

School of Mathematics, Harbin Institute of Technology, Harbin 150001, China

2. 

School of Mathematics and Institute for Advanced Study in Mathematics, Harbin Institute of Technology, Harbin 150001, China

* Corresponding author: Zhuchun Li

Received  July 2019 Revised  September 2019 Published  September 2020

Fund Project: This work was supported by NSF of China grant 11671109. The work of Z. Li was also supported in part by Heilongjiang Provincial Natural Science Foundation of China (grant LH2019A012)

We discuss the complete synchronization for a Kuramoto-like model for power grids with frustration. For identical oscillators without frustration, it will converge to complete phase and frequency synchronization exponentially fast if the initial phases are distributed in a half circle. For nonidentical oscillators with frustration, we present a framework leading to complete frequency synchronization where the initial phase configurations are located inside the half of a circle. Our estimates are based on the monotonicity arguments of extremal phase and frequency.

Citation: Xiaoxue Zhao, Zhuchun Li. Synchronization of a Kuramoto-like model for power grids with frustration. Networks & Heterogeneous Media, 2020, 15 (3) : 543-553. doi: 10.3934/nhm.2020030
References:
[1]

J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente, F. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005). doi: 10.1103/RevModPhys.77.137.  Google Scholar

[2]

J. Buck and E. Buck, Biology of synchronous flashing of fireflies, Nature, 211 (1966), 562-564.  doi: 10.1038/211562a0.  Google Scholar

[3]

Y.-P. ChoiS.-Y. HaS. Jung and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Phys. D, 241 (2012), 735-754.  doi: 10.1016/j.physd.2011.11.011.  Google Scholar

[4]

Y.-P. Choi and Z. Li, Synchronization of nonuniform Kuramoto oscillators for power grids with general connectivity and dampings, Nonlinearity, 32 (2019), 559–583. doi: 10.1088/1361-6544/aaec94.  Google Scholar

[5]

S.-H. ChoiI. Ryoo and B. I. Hong, Complete position synchronization in the power grid system, Appl. Math. Lett., 84 (2018), 19-25.  doi: 10.1016/j.aml.2018.04.004.  Google Scholar

[6]

F. Dörfler and F. Bullo, Synchronization in complex networks of phase oscillators: A survey, Automatica J. IFAC, 50 (2014), 1539-1564.  doi: 10.1016/j.automatica.2014.04.012.  Google Scholar

[7]

F. Dörfler and F. Bullo, Synchronization and transient stability in power networks and nonuniform Kuramoto oscillators, SIAM J. Control Optim., 50 (2012), 1616-1642.  doi: 10.1137/110851584.  Google Scholar

[8]

B. Ermentrout, An adaptive model for synchrony in the firefly Pteroptyx malaccae, J. Math. Biol., 29 (1991), 571-585.  doi: 10.1007/BF00164052.  Google Scholar

[9]

G. FilatrellaA. H. Nielsen and N. F. Pedersen, Analysis of a power grid using a Kuramoto-like model, Eur. Phys. J. B, 61 (2008), 485-491.  doi: 10.1140/epjb/e2008-00098-8.  Google Scholar

[10]

S.-Y. HaT. Ha and J.-H. Kim, On the complete synchronization of the Kuramoto phase model, Phys. D, 239 (2010), 1692-1700.  doi: 10.1016/j.physd.2010.05.003.  Google Scholar

[11]

S.-Y. HaY. Kim and Z. Li, Asymptotic synchronous behavior of Kuramoto type models with frustrations, Netw. Heterog. Media, 9 (2014), 33-64.  doi: 10.3934/nhm.2014.9.33.  Google Scholar

[12]

S.-Y. HaD. Ko and Y. Zhang, Emergence of phase-locking in the Kuramoto model for identical oscillators with frustration, SIAM J. Appl. Dyn. Syst., 17 (2018), 581-625.  doi: 10.1137/17M1112959.  Google Scholar

[13]

Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, in International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Phys., 39, Springer, Berlin, 1975,420–422. doi: 10.1007/BFb0013365.  Google Scholar

[14]

E. Oh, C. Choi, B. Kahng and D. Kim, Modular synchronization in complex networks with a gauge Kuramoto model, Europhys. Lett. (EPL), 83 (2008). doi: 10.1209/0295-5075/83/68003.  Google Scholar

[15]

C. S. Peskin, Mathematical Aspects of Heart Physiology, Courant Institute of Mathematical Sciences, New York University, New York, 1975.  Google Scholar

[16]

H. Sakaguchi and Y. Kuramoto, A soluble active rotator model showing phase transitions via mutual entrainment, Progr. Theoret. Phys., 76 (1986), 576-581.  doi: 10.1143/PTP.76.576.  Google Scholar

show all references

References:
[1]

J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente, F. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005). doi: 10.1103/RevModPhys.77.137.  Google Scholar

[2]

J. Buck and E. Buck, Biology of synchronous flashing of fireflies, Nature, 211 (1966), 562-564.  doi: 10.1038/211562a0.  Google Scholar

[3]

Y.-P. ChoiS.-Y. HaS. Jung and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Phys. D, 241 (2012), 735-754.  doi: 10.1016/j.physd.2011.11.011.  Google Scholar

[4]

Y.-P. Choi and Z. Li, Synchronization of nonuniform Kuramoto oscillators for power grids with general connectivity and dampings, Nonlinearity, 32 (2019), 559–583. doi: 10.1088/1361-6544/aaec94.  Google Scholar

[5]

S.-H. ChoiI. Ryoo and B. I. Hong, Complete position synchronization in the power grid system, Appl. Math. Lett., 84 (2018), 19-25.  doi: 10.1016/j.aml.2018.04.004.  Google Scholar

[6]

F. Dörfler and F. Bullo, Synchronization in complex networks of phase oscillators: A survey, Automatica J. IFAC, 50 (2014), 1539-1564.  doi: 10.1016/j.automatica.2014.04.012.  Google Scholar

[7]

F. Dörfler and F. Bullo, Synchronization and transient stability in power networks and nonuniform Kuramoto oscillators, SIAM J. Control Optim., 50 (2012), 1616-1642.  doi: 10.1137/110851584.  Google Scholar

[8]

B. Ermentrout, An adaptive model for synchrony in the firefly Pteroptyx malaccae, J. Math. Biol., 29 (1991), 571-585.  doi: 10.1007/BF00164052.  Google Scholar

[9]

G. FilatrellaA. H. Nielsen and N. F. Pedersen, Analysis of a power grid using a Kuramoto-like model, Eur. Phys. J. B, 61 (2008), 485-491.  doi: 10.1140/epjb/e2008-00098-8.  Google Scholar

[10]

S.-Y. HaT. Ha and J.-H. Kim, On the complete synchronization of the Kuramoto phase model, Phys. D, 239 (2010), 1692-1700.  doi: 10.1016/j.physd.2010.05.003.  Google Scholar

[11]

S.-Y. HaY. Kim and Z. Li, Asymptotic synchronous behavior of Kuramoto type models with frustrations, Netw. Heterog. Media, 9 (2014), 33-64.  doi: 10.3934/nhm.2014.9.33.  Google Scholar

[12]

S.-Y. HaD. Ko and Y. Zhang, Emergence of phase-locking in the Kuramoto model for identical oscillators with frustration, SIAM J. Appl. Dyn. Syst., 17 (2018), 581-625.  doi: 10.1137/17M1112959.  Google Scholar

[13]

Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, in International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Phys., 39, Springer, Berlin, 1975,420–422. doi: 10.1007/BFb0013365.  Google Scholar

[14]

E. Oh, C. Choi, B. Kahng and D. Kim, Modular synchronization in complex networks with a gauge Kuramoto model, Europhys. Lett. (EPL), 83 (2008). doi: 10.1209/0295-5075/83/68003.  Google Scholar

[15]

C. S. Peskin, Mathematical Aspects of Heart Physiology, Courant Institute of Mathematical Sciences, New York University, New York, 1975.  Google Scholar

[16]

H. Sakaguchi and Y. Kuramoto, A soluble active rotator model showing phase transitions via mutual entrainment, Progr. Theoret. Phys., 76 (1986), 576-581.  doi: 10.1143/PTP.76.576.  Google Scholar

[1]

Woojoo Shim. On the generic complete synchronization of the discrete Kuramoto model. Kinetic & Related Models, 2020, 13 (5) : 979-1005. doi: 10.3934/krm.2020034

[2]

Stefano Cosenza, Paolo Crucitti, Luigi Fortuna, Mattia Frasca, Manuela La Rosa, Cecilia Stagni, Lisa Usai. From Net Topology to Synchronization in HR Neuron Grids. Mathematical Biosciences & Engineering, 2005, 2 (1) : 53-77. doi: 10.3934/mbe.2005.2.53

[3]

Seung-Yeal Ha, Hansol Park, Yinglong Zhang. Nonlinear stability of stationary solutions to the Kuramoto-Sakaguchi equation with frustration. Networks & Heterogeneous Media, 2020, 15 (3) : 427-461. doi: 10.3934/nhm.2020026

[4]

Seung-Yeal Ha, Se Eun Noh, Jinyeong Park. Practical synchronization of generalized Kuramoto systems with an intrinsic dynamics. Networks & Heterogeneous Media, 2015, 10 (4) : 787-807. doi: 10.3934/nhm.2015.10.787

[5]

Seung-Yeal Ha, Jaeseung Lee, Zhuchun Li. Emergence of local synchronization in an ensemble of heterogeneous Kuramoto oscillators. Networks & Heterogeneous Media, 2017, 12 (1) : 1-24. doi: 10.3934/nhm.2017001

[6]

Chun-Hsiung Hsia, Chang-Yeol Jung, Bongsuk Kwon. On the global convergence of frequency synchronization for Kuramoto and Winfree oscillators. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3319-3334. doi: 10.3934/dcdsb.2018322

[7]

Stéphane Chrétien, Sébastien Darses, Christophe Guyeux, Paul Clarkson. On the pinning controllability of complex networks using perturbation theory of extreme singular values. application to synchronisation in power grids. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 289-299. doi: 10.3934/naco.2017019

[8]

Stephane Chretien, Paul Clarkson. A fast algorithm for the semi-definite relaxation of the state estimation problem in power grids. Journal of Industrial & Management Optimization, 2020, 16 (1) : 431-443. doi: 10.3934/jimo.2018161

[9]

Vladimir Jaćimović, Aladin Crnkić. The General Non-Abelian Kuramoto Model on the 3-sphere. Networks & Heterogeneous Media, 2020, 15 (1) : 111-124. doi: 10.3934/nhm.2020005

[10]

Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. Uniform stability and mean-field limit for the augmented Kuramoto model. Networks & Heterogeneous Media, 2018, 13 (2) : 297-322. doi: 10.3934/nhm.2018013

[11]

Paolo Antonelli, Seung-Yeal Ha, Dohyun Kim, Pierangelo Marcati. The Wigner-Lohe model for quantum synchronization and its emergent dynamics. Networks & Heterogeneous Media, 2017, 12 (3) : 403-416. doi: 10.3934/nhm.2017018

[12]

Igor Chueshov, Peter E. Kloeden, Meihua Yang. Synchronization in coupled stochastic sine-Gordon wave model. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 2969-2990. doi: 10.3934/dcdsb.2016082

[13]

Marcello Delitala, Tommaso Lorenzi. Emergence of spatial patterns in a mathematical model for the co-culture dynamics of epithelial-like and mesenchymal-like cells. Mathematical Biosciences & Engineering, 2017, 14 (1) : 79-93. doi: 10.3934/mbe.2017006

[14]

Anibal T. Azevedo, Aurelio R. L. Oliveira, Marcos J. Rider, Secundino Soares. How to efficiently incorporate facts devices in optimal active power flow model. Journal of Industrial & Management Optimization, 2010, 6 (2) : 315-331. doi: 10.3934/jimo.2010.6.315

[15]

Marco Scianna, Luca Munaron. Multiscale model of tumor-derived capillary-like network formation. Networks & Heterogeneous Media, 2011, 6 (4) : 597-624. doi: 10.3934/nhm.2011.6.597

[16]

Conrad Bertrand Tabi, Alidou Mohamadou, Timoleon Crepin Kofane. Soliton-like excitation in a nonlinear model of DNA dynamics with viscosity. Mathematical Biosciences & Engineering, 2008, 5 (1) : 205-216. doi: 10.3934/mbe.2008.5.205

[17]

Hayato Chiba, Georgi S. Medvedev. The mean field analysis of the kuramoto model on graphs Ⅱ. asymptotic stability of the incoherent state, center manifold reduction, and bifurcations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3897-3921. doi: 10.3934/dcds.2019157

[18]

Zhuchun Li, Yi Liu, Xiaoping Xue. Convergence and stability of generalized gradient systems by Łojasiewicz inequality with application in continuum Kuramoto model. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 345-367. doi: 10.3934/dcds.2019014

[19]

Hayato Chiba, Georgi S. Medvedev. The mean field analysis of the Kuramoto model on graphs Ⅰ. The mean field equation and transition point formulas. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 131-155. doi: 10.3934/dcds.2019006

[20]

Young-Pil Choi, Seung-Yeal Ha, Seok-Bae Yun. Global existence and asymptotic behavior of measure valued solutions to the kinetic Kuramoto--Daido model with inertia. Networks & Heterogeneous Media, 2013, 8 (4) : 943-968. doi: 10.3934/nhm.2013.8.943

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (24)
  • HTML views (34)
  • Cited by (0)

Other articles
by authors

[Back to Top]