-
Previous Article
A two-dimensional multi-class traffic flow model
- NHM Home
- This Issue
-
Next Article
Properties of the LWR model with time delay
Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $
1. | Department of Mathematics and Institute for Nonlinear Science, Donghua University, Shanghai, China |
2. | Department of Mathematics, Donghua University, Shanghai, China |
In this paper, we investigate the long time behavior of the solution for the nonlinear wave equation with frictional and visco-elastic damping terms in $ \mathbb{R}^n_+ $. It is shown that for the long time, the frictional damped effect is dominated. The Green's functions for the linear initial boundary value problem can be described in terms of the fundamental solutions for the full space problem and reflected fundamental solutions coupled with the boundary operator. Using the Duhamel's principle, we get the pointwise long time behavior of the solution $ \partial_{{\bf{x}}}^{\alpha}u $ for $ |\alpha|\le 1 $.
References:
[1] |
F. X. Chen, B. L. Guo and P. Wang,
Long time behavior of strongly damped nonlinear wave equations, J. Differ. Equ., 147 (1998), 231-241.
doi: 10.1006/jdeq.1998.3447. |
[2] |
R. Chill and A. Haraux,
An optimal estimate for the difference of solutions of two abstract evolution equations, J. Differ. Equ., 193 (2003), 385-395.
doi: 10.1016/S0022-0396(03)00057-3. |
[3] |
S. J. Deng, W. K. Wang and S. H. Yu,
Green's functions of wave equations in $R^n_+$ $\times$ $R_+$, Arch. Ration. Mech. Anal., 216 (2015), 881-903.
doi: 10.1007/s00205-014-0821-2. |
[4] |
S. J. Deng, W. K. Wang and H. L. Zhao,
Existence theory and $L^p$ estimates for the solution of nonlinear viscous wave equation, Nonlinear Anal. Real World Appl., 11 (2010), 4404-4414.
doi: 10.1016/j.nonrwa.2010.05.024. |
[5] |
S. J. Deng and W. K. Wang,
Half space problem for Euler equations with damping in 3-D, J. Differ. Equ., 11 (2017), 7372-7411.
doi: 10.1016/j.jde.2017.08.013. |
[6] |
S. J. Deng,
Initial-boundary value problem for p-system with damping in half space, Nonlinear Anal., 143 (2016), 193-210.
doi: 10.1016/j.na.2016.05.009. |
[7] |
S. J. Deng and S. H. Yu,
Green's function and pointwise convergence for compressible Navier-Stokes equations, Quart. Appl. Math., 75 (2017), 433-503.
doi: 10.1090/qam/1461. |
[8] |
L. L. Du and H. T. Wang,
Long time wave behavior of the Navier-Stokes equations in half space, Discrete Contin. Dyn. Syst. A, 38 (2018), 1349-1363.
doi: 10.3934/dcds.2018055. |
[9] |
L. L. Du and C. X. Ren,
Pointwise wave behavior of the initial-boundary value problem for the nonlinear damped wave equation in $R^n_+$, Discrete Contin. Dyn. Syst. B, 22 (2019), 3265-3280.
doi: 10.3934/dcdsb.2018319. |
[10] |
L. L. Du,
Initial boundary value problem of Euler equations with damping in $\mathbb{R}^n_+$, Nonlinear Anal., 176 (2018), 157-177.
doi: 10.1016/j.na.2018.06.014. |
[11] |
R. Ikehata,
Asymptotic profiles for wave equations with strong damping, J. Differ. Equ., 257 (2014), 2159-2177.
doi: 10.1016/j.jde.2014.05.031. |
[12] |
R. Ikehata,
Some remarks on the asymptotic profiles of solutions for strongly damped wave equations on the 1-D half space, J. Math. Anal. Appl., 421 (2015), 905-916.
doi: 10.1016/j.jmaa.2014.07.055. |
[13] |
R. Ikehata and Y. Inoue,
Global existence of weak solutions for two-dimensional semilinear wave equations with strong damping in an exterior domain, Nonlinear Anal., 68 (2008), 154-169.
doi: 10.1016/j.na.2006.10.038. |
[14] |
R. Ikehata and A. Sawada,
Asymptotic profile of solutions for wave equations with frictional and viscoelastic damping terms, Asymptot. Anal., 98 (2016), 59-77.
doi: 10.3233/ASY-161361. |
[15] |
R. Ikehata and H. Takeda,
Critical exponent for nonlinear wave equations with frictional and viscoelastic damping terms, Nonlinear Anal., 148 (2017), 228-253.
doi: 10.1016/j.na.2016.10.008. |
[16] |
R. Ikehata and H. Takeda, Large time behavior of global solutions to nonlinear wave equations with frictional and viscoelastic damping terms, Osaka J. Math., 56 (2019), 807–830. Available from: https://projecteuclid.org/euclid.ojm/1571623223. |
[17] |
T. P. Liu and S. H. Yu,
On boundary relation for some dissipative systems, Bullet. Inst. of Math. Academia Sinica, 6 (2011), 245-267.
|
[18] |
T. P. Liu and S. H. Yu,
Boundary wave propagator for compressible Navier-Stokes equations, Found. Comput. Math., 14 (2014), 1287-1335.
doi: 10.1007/s10208-013-9180-x. |
[19] |
P. Marcatia and K. Nishihara,
The $L^p-L^q$ estimates of solutions to one-dimensional damped wave equations and their application to the compressible flow through porous media, J. Differ. Equ., 191 (2003), 445-469.
doi: 10.1016/S0022-0396(03)00026-3. |
[20] |
T. Narazaki,
$L^p-L^q$ estimates for damped wave equations and their applications to semilinear problem, J. Math. Soc. Japan, 56 (2004), 586-626.
doi: 10.2969/jmsj/1191418647. |
[21] |
G. Ponce,
Global existence of small solutions to a class of nonlinear evolution equations, Nonlinear Anal., 9 (1985), 399-418.
doi: 10.1016/0362-546X(85)90001-X. |
[22] |
Y. Shibata,
On the rate of decay of solutions to linear viscoelastic equation, Math. Meth. Appl. Sci., 23 (2000), 203-226.
doi: 10.1002/(SICI)1099-1476(200002)23:3<203::AID-MMA111>3.0.CO;2-M. |
[23] |
Y. Ueda, T. Nakamura and S. Kawashima,
Stability of planar stationary waves for damped wave equations with nonlinear convection in multi-dimensional half space, Kinet. Relat. Models, 1 (2008), 49-64.
doi: 10.3934/krm.2008.1.49. |
[24] |
H. T. Wang, Some Studies in Initial-boundary Value Problem, Ph.D thesis, National University of Singapore, 2014. Google Scholar |
[25] |
G. F. Webb,
Existence and asymptotic behavior for a strongly damped nonlinear wave equation, Canad. J. Math., 32 (1980), 631-643.
doi: 10.4153/CJM-1980-049-5. |
[26] |
R. Z. Xu and Y. C. Liu,
Asymptotic behavior of solutions for initial-boundary value problems for strongly damped nonlinear wave equations, Nonlinear Anal., 69 (2008), 2492-2495.
doi: 10.1016/j.na.2007.08.027. |
[27] |
T. Yamazaki,
Diffusion phenomenon for abstract wave equations with decaying dissipation, Adv. Stud. Pure Math., 47-1 (2007), 363-381.
doi: 10.2969/aspm/04710363. |
[28] |
Z. J. Yang,
Initial boundary value problem for a class of non-linear strongly damped wave equations, Math. Meth. Appl. Sci., 26 (2003), 1047-1066.
doi: 10.1002/mma.412. |
[29] |
S. F. Zhou,
Dimension of the global attractor for strongly damped nonlinear wave equation, J. Math. Anal. Appl., 233 (1999), 102-115.
doi: 10.1006/jmaa.1999.6269. |
show all references
References:
[1] |
F. X. Chen, B. L. Guo and P. Wang,
Long time behavior of strongly damped nonlinear wave equations, J. Differ. Equ., 147 (1998), 231-241.
doi: 10.1006/jdeq.1998.3447. |
[2] |
R. Chill and A. Haraux,
An optimal estimate for the difference of solutions of two abstract evolution equations, J. Differ. Equ., 193 (2003), 385-395.
doi: 10.1016/S0022-0396(03)00057-3. |
[3] |
S. J. Deng, W. K. Wang and S. H. Yu,
Green's functions of wave equations in $R^n_+$ $\times$ $R_+$, Arch. Ration. Mech. Anal., 216 (2015), 881-903.
doi: 10.1007/s00205-014-0821-2. |
[4] |
S. J. Deng, W. K. Wang and H. L. Zhao,
Existence theory and $L^p$ estimates for the solution of nonlinear viscous wave equation, Nonlinear Anal. Real World Appl., 11 (2010), 4404-4414.
doi: 10.1016/j.nonrwa.2010.05.024. |
[5] |
S. J. Deng and W. K. Wang,
Half space problem for Euler equations with damping in 3-D, J. Differ. Equ., 11 (2017), 7372-7411.
doi: 10.1016/j.jde.2017.08.013. |
[6] |
S. J. Deng,
Initial-boundary value problem for p-system with damping in half space, Nonlinear Anal., 143 (2016), 193-210.
doi: 10.1016/j.na.2016.05.009. |
[7] |
S. J. Deng and S. H. Yu,
Green's function and pointwise convergence for compressible Navier-Stokes equations, Quart. Appl. Math., 75 (2017), 433-503.
doi: 10.1090/qam/1461. |
[8] |
L. L. Du and H. T. Wang,
Long time wave behavior of the Navier-Stokes equations in half space, Discrete Contin. Dyn. Syst. A, 38 (2018), 1349-1363.
doi: 10.3934/dcds.2018055. |
[9] |
L. L. Du and C. X. Ren,
Pointwise wave behavior of the initial-boundary value problem for the nonlinear damped wave equation in $R^n_+$, Discrete Contin. Dyn. Syst. B, 22 (2019), 3265-3280.
doi: 10.3934/dcdsb.2018319. |
[10] |
L. L. Du,
Initial boundary value problem of Euler equations with damping in $\mathbb{R}^n_+$, Nonlinear Anal., 176 (2018), 157-177.
doi: 10.1016/j.na.2018.06.014. |
[11] |
R. Ikehata,
Asymptotic profiles for wave equations with strong damping, J. Differ. Equ., 257 (2014), 2159-2177.
doi: 10.1016/j.jde.2014.05.031. |
[12] |
R. Ikehata,
Some remarks on the asymptotic profiles of solutions for strongly damped wave equations on the 1-D half space, J. Math. Anal. Appl., 421 (2015), 905-916.
doi: 10.1016/j.jmaa.2014.07.055. |
[13] |
R. Ikehata and Y. Inoue,
Global existence of weak solutions for two-dimensional semilinear wave equations with strong damping in an exterior domain, Nonlinear Anal., 68 (2008), 154-169.
doi: 10.1016/j.na.2006.10.038. |
[14] |
R. Ikehata and A. Sawada,
Asymptotic profile of solutions for wave equations with frictional and viscoelastic damping terms, Asymptot. Anal., 98 (2016), 59-77.
doi: 10.3233/ASY-161361. |
[15] |
R. Ikehata and H. Takeda,
Critical exponent for nonlinear wave equations with frictional and viscoelastic damping terms, Nonlinear Anal., 148 (2017), 228-253.
doi: 10.1016/j.na.2016.10.008. |
[16] |
R. Ikehata and H. Takeda, Large time behavior of global solutions to nonlinear wave equations with frictional and viscoelastic damping terms, Osaka J. Math., 56 (2019), 807–830. Available from: https://projecteuclid.org/euclid.ojm/1571623223. |
[17] |
T. P. Liu and S. H. Yu,
On boundary relation for some dissipative systems, Bullet. Inst. of Math. Academia Sinica, 6 (2011), 245-267.
|
[18] |
T. P. Liu and S. H. Yu,
Boundary wave propagator for compressible Navier-Stokes equations, Found. Comput. Math., 14 (2014), 1287-1335.
doi: 10.1007/s10208-013-9180-x. |
[19] |
P. Marcatia and K. Nishihara,
The $L^p-L^q$ estimates of solutions to one-dimensional damped wave equations and their application to the compressible flow through porous media, J. Differ. Equ., 191 (2003), 445-469.
doi: 10.1016/S0022-0396(03)00026-3. |
[20] |
T. Narazaki,
$L^p-L^q$ estimates for damped wave equations and their applications to semilinear problem, J. Math. Soc. Japan, 56 (2004), 586-626.
doi: 10.2969/jmsj/1191418647. |
[21] |
G. Ponce,
Global existence of small solutions to a class of nonlinear evolution equations, Nonlinear Anal., 9 (1985), 399-418.
doi: 10.1016/0362-546X(85)90001-X. |
[22] |
Y. Shibata,
On the rate of decay of solutions to linear viscoelastic equation, Math. Meth. Appl. Sci., 23 (2000), 203-226.
doi: 10.1002/(SICI)1099-1476(200002)23:3<203::AID-MMA111>3.0.CO;2-M. |
[23] |
Y. Ueda, T. Nakamura and S. Kawashima,
Stability of planar stationary waves for damped wave equations with nonlinear convection in multi-dimensional half space, Kinet. Relat. Models, 1 (2008), 49-64.
doi: 10.3934/krm.2008.1.49. |
[24] |
H. T. Wang, Some Studies in Initial-boundary Value Problem, Ph.D thesis, National University of Singapore, 2014. Google Scholar |
[25] |
G. F. Webb,
Existence and asymptotic behavior for a strongly damped nonlinear wave equation, Canad. J. Math., 32 (1980), 631-643.
doi: 10.4153/CJM-1980-049-5. |
[26] |
R. Z. Xu and Y. C. Liu,
Asymptotic behavior of solutions for initial-boundary value problems for strongly damped nonlinear wave equations, Nonlinear Anal., 69 (2008), 2492-2495.
doi: 10.1016/j.na.2007.08.027. |
[27] |
T. Yamazaki,
Diffusion phenomenon for abstract wave equations with decaying dissipation, Adv. Stud. Pure Math., 47-1 (2007), 363-381.
doi: 10.2969/aspm/04710363. |
[28] |
Z. J. Yang,
Initial boundary value problem for a class of non-linear strongly damped wave equations, Math. Meth. Appl. Sci., 26 (2003), 1047-1066.
doi: 10.1002/mma.412. |
[29] |
S. F. Zhou,
Dimension of the global attractor for strongly damped nonlinear wave equation, J. Math. Anal. Appl., 233 (1999), 102-115.
doi: 10.1006/jmaa.1999.6269. |
[1] |
Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021019 |
[2] |
Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3063-3092. doi: 10.3934/dcds.2020398 |
[3] |
Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019 |
[4] |
Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021030 |
[5] |
Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043 |
[6] |
Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055 |
[7] |
Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151 |
[8] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021, 16 (2) : 155-185. doi: 10.3934/nhm.2021003 |
[9] |
Tayeb Hadj Kaddour, Michael Reissig. Global well-posedness for effectively damped wave models with nonlinear memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021057 |
[10] |
Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004 |
[11] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[12] |
Siqi Chen, Yong-Kui Chang, Yanyan Wei. Pseudo $ S $-asymptotically Bloch type periodic solutions to a damped evolution equation. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021017 |
[13] |
Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1059-1076. doi: 10.3934/cpaa.2021006 |
[14] |
Yanling Shi, Junxiang Xu. Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3479-3490. doi: 10.3934/dcdsb.2020241 |
[15] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[16] |
Maolin Cheng, Yun Liu, Jianuo Li, Bin Liu. Nonlinear Grey Bernoulli model NGBM (1, 1)'s parameter optimisation method and model application. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021054 |
[17] |
Xinqun Mei, Jundong Zhou. The interior gradient estimate of prescribed Hessian quotient curvature equation in the hyperbolic space. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1187-1198. doi: 10.3934/cpaa.2021012 |
[18] |
Samira Shahsavari, Saeed Ketabchi. The proximal methods for solving absolute value equation. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 449-460. doi: 10.3934/naco.2020037 |
[19] |
M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072 |
[20] |
Oleksandr Boichuk, Victor Feruk. Boundary-value problems for weakly singular integral equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021094 |
2019 Impact Factor: 1.053
Tools
Article outline
[Back to Top]