-
Previous Article
Properties of the LWR model with time delay
- NHM Home
- This Issue
- Next Article
Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $
1. | Department of Mathematics and Institute for Nonlinear Science, Donghua University, Shanghai, China |
2. | Department of Mathematics, Donghua University, Shanghai, China |
In this paper, we investigate the long time behavior of the solution for the nonlinear wave equation with frictional and visco-elastic damping terms in $ \mathbb{R}^n_+ $. It is shown that for the long time, the frictional damped effect is dominated. The Green's functions for the linear initial boundary value problem can be described in terms of the fundamental solutions for the full space problem and reflected fundamental solutions coupled with the boundary operator. Using the Duhamel's principle, we get the pointwise long time behavior of the solution $ \partial_{{\bf{x}}}^{\alpha}u $ for $ |\alpha|\le 1 $.
References:
[1] |
F. X. Chen, B. L. Guo and P. Wang,
Long time behavior of strongly damped nonlinear wave equations, J. Differ. Equ., 147 (1998), 231-241.
doi: 10.1006/jdeq.1998.3447. |
[2] |
R. Chill and A. Haraux,
An optimal estimate for the difference of solutions of two abstract evolution equations, J. Differ. Equ., 193 (2003), 385-395.
doi: 10.1016/S0022-0396(03)00057-3. |
[3] |
S. J. Deng, W. K. Wang and S. H. Yu,
Green's functions of wave equations in $R^n_+$ $\times$ $R_+$, Arch. Ration. Mech. Anal., 216 (2015), 881-903.
doi: 10.1007/s00205-014-0821-2. |
[4] |
S. J. Deng, W. K. Wang and H. L. Zhao,
Existence theory and $L^p$ estimates for the solution of nonlinear viscous wave equation, Nonlinear Anal. Real World Appl., 11 (2010), 4404-4414.
doi: 10.1016/j.nonrwa.2010.05.024. |
[5] |
S. J. Deng and W. K. Wang,
Half space problem for Euler equations with damping in 3-D, J. Differ. Equ., 11 (2017), 7372-7411.
doi: 10.1016/j.jde.2017.08.013. |
[6] |
S. J. Deng,
Initial-boundary value problem for p-system with damping in half space, Nonlinear Anal., 143 (2016), 193-210.
doi: 10.1016/j.na.2016.05.009. |
[7] |
S. J. Deng and S. H. Yu,
Green's function and pointwise convergence for compressible Navier-Stokes equations, Quart. Appl. Math., 75 (2017), 433-503.
doi: 10.1090/qam/1461. |
[8] |
L. L. Du and H. T. Wang,
Long time wave behavior of the Navier-Stokes equations in half space, Discrete Contin. Dyn. Syst. A, 38 (2018), 1349-1363.
doi: 10.3934/dcds.2018055. |
[9] |
L. L. Du and C. X. Ren,
Pointwise wave behavior of the initial-boundary value problem for the nonlinear damped wave equation in $R^n_+$, Discrete Contin. Dyn. Syst. B, 22 (2019), 3265-3280.
doi: 10.3934/dcdsb.2018319. |
[10] |
L. L. Du,
Initial boundary value problem of Euler equations with damping in $\mathbb{R}^n_+$, Nonlinear Anal., 176 (2018), 157-177.
doi: 10.1016/j.na.2018.06.014. |
[11] |
R. Ikehata,
Asymptotic profiles for wave equations with strong damping, J. Differ. Equ., 257 (2014), 2159-2177.
doi: 10.1016/j.jde.2014.05.031. |
[12] |
R. Ikehata,
Some remarks on the asymptotic profiles of solutions for strongly damped wave equations on the 1-D half space, J. Math. Anal. Appl., 421 (2015), 905-916.
doi: 10.1016/j.jmaa.2014.07.055. |
[13] |
R. Ikehata and Y. Inoue,
Global existence of weak solutions for two-dimensional semilinear wave equations with strong damping in an exterior domain, Nonlinear Anal., 68 (2008), 154-169.
doi: 10.1016/j.na.2006.10.038. |
[14] |
R. Ikehata and A. Sawada,
Asymptotic profile of solutions for wave equations with frictional and viscoelastic damping terms, Asymptot. Anal., 98 (2016), 59-77.
doi: 10.3233/ASY-161361. |
[15] |
R. Ikehata and H. Takeda,
Critical exponent for nonlinear wave equations with frictional and viscoelastic damping terms, Nonlinear Anal., 148 (2017), 228-253.
doi: 10.1016/j.na.2016.10.008. |
[16] |
R. Ikehata and H. Takeda, Large time behavior of global solutions to nonlinear wave equations with frictional and viscoelastic damping terms, Osaka J. Math., 56 (2019), 807–830. Available from: https://projecteuclid.org/euclid.ojm/1571623223. |
[17] |
T. P. Liu and S. H. Yu,
On boundary relation for some dissipative systems, Bullet. Inst. of Math. Academia Sinica, 6 (2011), 245-267.
|
[18] |
T. P. Liu and S. H. Yu,
Boundary wave propagator for compressible Navier-Stokes equations, Found. Comput. Math., 14 (2014), 1287-1335.
doi: 10.1007/s10208-013-9180-x. |
[19] |
P. Marcatia and K. Nishihara,
The $L^p-L^q$ estimates of solutions to one-dimensional damped wave equations and their application to the compressible flow through porous media, J. Differ. Equ., 191 (2003), 445-469.
doi: 10.1016/S0022-0396(03)00026-3. |
[20] |
T. Narazaki,
$L^p-L^q$ estimates for damped wave equations and their applications to semilinear problem, J. Math. Soc. Japan, 56 (2004), 586-626.
doi: 10.2969/jmsj/1191418647. |
[21] |
G. Ponce,
Global existence of small solutions to a class of nonlinear evolution equations, Nonlinear Anal., 9 (1985), 399-418.
doi: 10.1016/0362-546X(85)90001-X. |
[22] |
Y. Shibata,
On the rate of decay of solutions to linear viscoelastic equation, Math. Meth. Appl. Sci., 23 (2000), 203-226.
doi: 10.1002/(SICI)1099-1476(200002)23:3<203::AID-MMA111>3.0.CO;2-M. |
[23] |
Y. Ueda, T. Nakamura and S. Kawashima,
Stability of planar stationary waves for damped wave equations with nonlinear convection in multi-dimensional half space, Kinet. Relat. Models, 1 (2008), 49-64.
doi: 10.3934/krm.2008.1.49. |
[24] |
H. T. Wang, Some Studies in Initial-boundary Value Problem, Ph.D thesis, National University of Singapore, 2014. Google Scholar |
[25] |
G. F. Webb,
Existence and asymptotic behavior for a strongly damped nonlinear wave equation, Canad. J. Math., 32 (1980), 631-643.
doi: 10.4153/CJM-1980-049-5. |
[26] |
R. Z. Xu and Y. C. Liu,
Asymptotic behavior of solutions for initial-boundary value problems for strongly damped nonlinear wave equations, Nonlinear Anal., 69 (2008), 2492-2495.
doi: 10.1016/j.na.2007.08.027. |
[27] |
T. Yamazaki,
Diffusion phenomenon for abstract wave equations with decaying dissipation, Adv. Stud. Pure Math., 47-1 (2007), 363-381.
doi: 10.2969/aspm/04710363. |
[28] |
Z. J. Yang,
Initial boundary value problem for a class of non-linear strongly damped wave equations, Math. Meth. Appl. Sci., 26 (2003), 1047-1066.
doi: 10.1002/mma.412. |
[29] |
S. F. Zhou,
Dimension of the global attractor for strongly damped nonlinear wave equation, J. Math. Anal. Appl., 233 (1999), 102-115.
doi: 10.1006/jmaa.1999.6269. |
show all references
References:
[1] |
F. X. Chen, B. L. Guo and P. Wang,
Long time behavior of strongly damped nonlinear wave equations, J. Differ. Equ., 147 (1998), 231-241.
doi: 10.1006/jdeq.1998.3447. |
[2] |
R. Chill and A. Haraux,
An optimal estimate for the difference of solutions of two abstract evolution equations, J. Differ. Equ., 193 (2003), 385-395.
doi: 10.1016/S0022-0396(03)00057-3. |
[3] |
S. J. Deng, W. K. Wang and S. H. Yu,
Green's functions of wave equations in $R^n_+$ $\times$ $R_+$, Arch. Ration. Mech. Anal., 216 (2015), 881-903.
doi: 10.1007/s00205-014-0821-2. |
[4] |
S. J. Deng, W. K. Wang and H. L. Zhao,
Existence theory and $L^p$ estimates for the solution of nonlinear viscous wave equation, Nonlinear Anal. Real World Appl., 11 (2010), 4404-4414.
doi: 10.1016/j.nonrwa.2010.05.024. |
[5] |
S. J. Deng and W. K. Wang,
Half space problem for Euler equations with damping in 3-D, J. Differ. Equ., 11 (2017), 7372-7411.
doi: 10.1016/j.jde.2017.08.013. |
[6] |
S. J. Deng,
Initial-boundary value problem for p-system with damping in half space, Nonlinear Anal., 143 (2016), 193-210.
doi: 10.1016/j.na.2016.05.009. |
[7] |
S. J. Deng and S. H. Yu,
Green's function and pointwise convergence for compressible Navier-Stokes equations, Quart. Appl. Math., 75 (2017), 433-503.
doi: 10.1090/qam/1461. |
[8] |
L. L. Du and H. T. Wang,
Long time wave behavior of the Navier-Stokes equations in half space, Discrete Contin. Dyn. Syst. A, 38 (2018), 1349-1363.
doi: 10.3934/dcds.2018055. |
[9] |
L. L. Du and C. X. Ren,
Pointwise wave behavior of the initial-boundary value problem for the nonlinear damped wave equation in $R^n_+$, Discrete Contin. Dyn. Syst. B, 22 (2019), 3265-3280.
doi: 10.3934/dcdsb.2018319. |
[10] |
L. L. Du,
Initial boundary value problem of Euler equations with damping in $\mathbb{R}^n_+$, Nonlinear Anal., 176 (2018), 157-177.
doi: 10.1016/j.na.2018.06.014. |
[11] |
R. Ikehata,
Asymptotic profiles for wave equations with strong damping, J. Differ. Equ., 257 (2014), 2159-2177.
doi: 10.1016/j.jde.2014.05.031. |
[12] |
R. Ikehata,
Some remarks on the asymptotic profiles of solutions for strongly damped wave equations on the 1-D half space, J. Math. Anal. Appl., 421 (2015), 905-916.
doi: 10.1016/j.jmaa.2014.07.055. |
[13] |
R. Ikehata and Y. Inoue,
Global existence of weak solutions for two-dimensional semilinear wave equations with strong damping in an exterior domain, Nonlinear Anal., 68 (2008), 154-169.
doi: 10.1016/j.na.2006.10.038. |
[14] |
R. Ikehata and A. Sawada,
Asymptotic profile of solutions for wave equations with frictional and viscoelastic damping terms, Asymptot. Anal., 98 (2016), 59-77.
doi: 10.3233/ASY-161361. |
[15] |
R. Ikehata and H. Takeda,
Critical exponent for nonlinear wave equations with frictional and viscoelastic damping terms, Nonlinear Anal., 148 (2017), 228-253.
doi: 10.1016/j.na.2016.10.008. |
[16] |
R. Ikehata and H. Takeda, Large time behavior of global solutions to nonlinear wave equations with frictional and viscoelastic damping terms, Osaka J. Math., 56 (2019), 807–830. Available from: https://projecteuclid.org/euclid.ojm/1571623223. |
[17] |
T. P. Liu and S. H. Yu,
On boundary relation for some dissipative systems, Bullet. Inst. of Math. Academia Sinica, 6 (2011), 245-267.
|
[18] |
T. P. Liu and S. H. Yu,
Boundary wave propagator for compressible Navier-Stokes equations, Found. Comput. Math., 14 (2014), 1287-1335.
doi: 10.1007/s10208-013-9180-x. |
[19] |
P. Marcatia and K. Nishihara,
The $L^p-L^q$ estimates of solutions to one-dimensional damped wave equations and their application to the compressible flow through porous media, J. Differ. Equ., 191 (2003), 445-469.
doi: 10.1016/S0022-0396(03)00026-3. |
[20] |
T. Narazaki,
$L^p-L^q$ estimates for damped wave equations and their applications to semilinear problem, J. Math. Soc. Japan, 56 (2004), 586-626.
doi: 10.2969/jmsj/1191418647. |
[21] |
G. Ponce,
Global existence of small solutions to a class of nonlinear evolution equations, Nonlinear Anal., 9 (1985), 399-418.
doi: 10.1016/0362-546X(85)90001-X. |
[22] |
Y. Shibata,
On the rate of decay of solutions to linear viscoelastic equation, Math. Meth. Appl. Sci., 23 (2000), 203-226.
doi: 10.1002/(SICI)1099-1476(200002)23:3<203::AID-MMA111>3.0.CO;2-M. |
[23] |
Y. Ueda, T. Nakamura and S. Kawashima,
Stability of planar stationary waves for damped wave equations with nonlinear convection in multi-dimensional half space, Kinet. Relat. Models, 1 (2008), 49-64.
doi: 10.3934/krm.2008.1.49. |
[24] |
H. T. Wang, Some Studies in Initial-boundary Value Problem, Ph.D thesis, National University of Singapore, 2014. Google Scholar |
[25] |
G. F. Webb,
Existence and asymptotic behavior for a strongly damped nonlinear wave equation, Canad. J. Math., 32 (1980), 631-643.
doi: 10.4153/CJM-1980-049-5. |
[26] |
R. Z. Xu and Y. C. Liu,
Asymptotic behavior of solutions for initial-boundary value problems for strongly damped nonlinear wave equations, Nonlinear Anal., 69 (2008), 2492-2495.
doi: 10.1016/j.na.2007.08.027. |
[27] |
T. Yamazaki,
Diffusion phenomenon for abstract wave equations with decaying dissipation, Adv. Stud. Pure Math., 47-1 (2007), 363-381.
doi: 10.2969/aspm/04710363. |
[28] |
Z. J. Yang,
Initial boundary value problem for a class of non-linear strongly damped wave equations, Math. Meth. Appl. Sci., 26 (2003), 1047-1066.
doi: 10.1002/mma.412. |
[29] |
S. F. Zhou,
Dimension of the global attractor for strongly damped nonlinear wave equation, J. Math. Anal. Appl., 233 (1999), 102-115.
doi: 10.1006/jmaa.1999.6269. |
[1] |
Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381 |
[2] |
Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243 |
[3] |
Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020398 |
[4] |
Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020340 |
[5] |
Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088 |
[6] |
Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020354 |
[7] |
Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270 |
[8] |
Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004 |
[9] |
Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367 |
[10] |
Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095 |
[11] |
Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020127 |
[12] |
Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053 |
[13] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[14] |
Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021028 |
[15] |
Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020442 |
[16] |
Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052 |
[17] |
Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380 |
[18] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[19] |
Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364 |
[20] |
Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174 |
2019 Impact Factor: 1.053
Tools
Article outline
[Back to Top]