
- Previous Article
- NHM Home
- This Issue
-
Next Article
A new model for the emergence of blood capillary networks
Periodic consensus in network systems with general distributed processing delays
1. | College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, P. R. China |
2. | College of Mathematics and Statistics, Changsha University of Science Technology, Changsha, 410076, P. R. China |
How to understand the dynamical consensus patterns in network systems is of particular significance in both theories and applications. In this paper, we are interested in investigating the influences of distributed processing delay on the consensus patterns in a network model. As new observations, we show that the desired network model undergoes both weak consensus and periodic consensus behaviors when the parameters reach a threshold value and the connectedness of the network system may be absent. In results, some criterions of weak consensus and periodic consensus with exponential convergent rate are established by the standard functional differential equations analysis. An analytic formula is given to calculate the asymptotic periodic consensus in terms of model parameters and the initial time interval. Also, we post the threshold values for some typical distributions included uniform distribution and Gamma distribution. Finally, we give the numerical simulation and analyse the influences of different delays on the consensus.
References:
[1] |
M. H. DeGroot,
Reaching a consensus, J. Am. Stat. Assoc., 69 (1974), 118-121.
|
[2] |
J. A. Fax and R. M. Murray,
Information flow and cooperative control of vehicle formations, IEEE Trans. Autom. Control, 49 (2004), 1465-1476.
doi: 10.1109/TAC.2004.834433. |
[3] |
Q. Feng, S. K. Nguang and A. Seuret,
Stability analysis of linear coupled differential–difference systems with general distributed delays, IEEE Transactions on Automatic Control, 65 (2020), 1356-1363.
doi: 10.1109/TAC.2019.2928145. |
[4] |
J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Springer-Verlag, Berlin, 1993.
doi: 10.1007/978-1-4612-4342-7. |
[5] |
J. Jost, F. M. Atay and W. Lu,
Consensus and synchronization in discrete-time networks of multi-agents with stochastically switching topologies and time delays, Networks and Heterogeneous Media, 6 (2011), 329-349.
doi: 10.3934/nhm.2011.6.329. |
[6] |
F. A. Khasawneh and B. P. Mann,
A spectral element approach for the stability of delay systems, Int. J. Numer. Meth. Engng., 87 (2011), 566-592.
|
[7] |
N. A. Lynch, Distributed Algorithms, San Francisco, CA: Morgan Kaufmann, 1996.
doi: 10.1108/IMDS-01-2014-0013. |
[8] |
F. Mazenc, M. Malisoff and H. $\ddot{O}$zbay,
Stability and robustness analysis for switched systems with time-varying delays, SIAM J. Control Optim., 56 (2018), 158-182.
doi: 10.1137/16M1104895. |
[9] |
M. Michiels, I. C. Morărescu and S.-I. Niculescu,
Consensus problems with distributed delays, with application to traffic flow models, SIAM J. Control Optim., 48 (2009), 77-101.
doi: 10.1137/060671425. |
[10] |
I. C. Morarescu, W. Michiels and M. Jungers, Synchronization of coupled nonlinear oscillatiors with gamma-distributed delays, in American Control Conference, ACC 2013, (2013), Washington, United States. |
[11] |
R. Olfati-Saber and R. M. Murray,
Consensus problems in networks of agents with switching topology and time-delays, IEEE Trans. Autom. Control, 49 (2004), 1520-1533.
doi: 10.1109/TAC.2004.834113. |
[12] |
A. V. Proskurnikov, Average consensus in networks with nonlinearly delayed couplings and switching topology, Automatica, 49 (2013) 2928–2932.
doi: 10.1016/j.automatica.2013.06.007. |
[13] |
D. Serre, Matrices, Graduate Texts in Mathematics, 216 (2010), Springer.
doi: 10.1007/978-1-4419-7683-3. |
[14] |
J. W. H. So, X. Tang and X. Zou,
Stability in a linear delay system without instantaneous negative feedback, SIAM J. Math. Anal., 33 (2002), 1297-1304.
doi: 10.1137/S0036141001389263. |
[15] |
O. Solomon and E. Fridman,
New stability conditions for systems with distributed delays, Automatica, 49 (2013), 3467-3475.
doi: 10.1016/j.automatica.2013.08.025. |
[16] |
T. Vicsek, A Czirók, E. Ben-Jacob, I. Cohen and O. Shochet,
Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.
doi: 10.1103/PhysRevLett.75.1226. |
show all references
References:
[1] |
M. H. DeGroot,
Reaching a consensus, J. Am. Stat. Assoc., 69 (1974), 118-121.
|
[2] |
J. A. Fax and R. M. Murray,
Information flow and cooperative control of vehicle formations, IEEE Trans. Autom. Control, 49 (2004), 1465-1476.
doi: 10.1109/TAC.2004.834433. |
[3] |
Q. Feng, S. K. Nguang and A. Seuret,
Stability analysis of linear coupled differential–difference systems with general distributed delays, IEEE Transactions on Automatic Control, 65 (2020), 1356-1363.
doi: 10.1109/TAC.2019.2928145. |
[4] |
J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Springer-Verlag, Berlin, 1993.
doi: 10.1007/978-1-4612-4342-7. |
[5] |
J. Jost, F. M. Atay and W. Lu,
Consensus and synchronization in discrete-time networks of multi-agents with stochastically switching topologies and time delays, Networks and Heterogeneous Media, 6 (2011), 329-349.
doi: 10.3934/nhm.2011.6.329. |
[6] |
F. A. Khasawneh and B. P. Mann,
A spectral element approach for the stability of delay systems, Int. J. Numer. Meth. Engng., 87 (2011), 566-592.
|
[7] |
N. A. Lynch, Distributed Algorithms, San Francisco, CA: Morgan Kaufmann, 1996.
doi: 10.1108/IMDS-01-2014-0013. |
[8] |
F. Mazenc, M. Malisoff and H. $\ddot{O}$zbay,
Stability and robustness analysis for switched systems with time-varying delays, SIAM J. Control Optim., 56 (2018), 158-182.
doi: 10.1137/16M1104895. |
[9] |
M. Michiels, I. C. Morărescu and S.-I. Niculescu,
Consensus problems with distributed delays, with application to traffic flow models, SIAM J. Control Optim., 48 (2009), 77-101.
doi: 10.1137/060671425. |
[10] |
I. C. Morarescu, W. Michiels and M. Jungers, Synchronization of coupled nonlinear oscillatiors with gamma-distributed delays, in American Control Conference, ACC 2013, (2013), Washington, United States. |
[11] |
R. Olfati-Saber and R. M. Murray,
Consensus problems in networks of agents with switching topology and time-delays, IEEE Trans. Autom. Control, 49 (2004), 1520-1533.
doi: 10.1109/TAC.2004.834113. |
[12] |
A. V. Proskurnikov, Average consensus in networks with nonlinearly delayed couplings and switching topology, Automatica, 49 (2013) 2928–2932.
doi: 10.1016/j.automatica.2013.06.007. |
[13] |
D. Serre, Matrices, Graduate Texts in Mathematics, 216 (2010), Springer.
doi: 10.1007/978-1-4419-7683-3. |
[14] |
J. W. H. So, X. Tang and X. Zou,
Stability in a linear delay system without instantaneous negative feedback, SIAM J. Math. Anal., 33 (2002), 1297-1304.
doi: 10.1137/S0036141001389263. |
[15] |
O. Solomon and E. Fridman,
New stability conditions for systems with distributed delays, Automatica, 49 (2013), 3467-3475.
doi: 10.1016/j.automatica.2013.08.025. |
[16] |
T. Vicsek, A Czirók, E. Ben-Jacob, I. Cohen and O. Shochet,
Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.
doi: 10.1103/PhysRevLett.75.1226. |










Cases | Descriptions | ||
Uniform distribution | |||
116.7278 | 16.8680 | Exponential distribution | |
3.8152 | 2.8801 | Special |
|
2.7019 | 2.3530 | Special |
|
Bernoulli distribution |
Cases | Descriptions | ||
Uniform distribution | |||
116.7278 | 16.8680 | Exponential distribution | |
3.8152 | 2.8801 | Special |
|
2.7019 | 2.3530 | Special |
|
Bernoulli distribution |
7.0605 | 0.3183 | 2.7692 | 0.4617 | 0.9713 |
8.2346 | 6.9483 | 3.1710 | 9.5022 | 0.3445 |
where the numbers are randomly selected in interval (0, 10). |
7.0605 | 0.3183 | 2.7692 | 0.4617 | 0.9713 |
8.2346 | 6.9483 | 3.1710 | 9.5022 | 0.3445 |
where the numbers are randomly selected in interval (0, 10). |
Cases | Results | ||
Uniform distribution (Fig. 1) | consensus | ||
periodic consensus | |||
Exponential distribution(Fig. 2) | consensus | ||
periodic consensus | |||
Special |
consensus | ||
periodic consensus | |||
Special |
consensus | ||
periodic consensus | |||
Bernoulli distribution(Fig. 5) | consensus | ||
periodic consensus |
Cases | Results | ||
Uniform distribution (Fig. 1) | consensus | ||
periodic consensus | |||
Exponential distribution(Fig. 2) | consensus | ||
periodic consensus | |||
Special |
consensus | ||
periodic consensus | |||
Special |
consensus | ||
periodic consensus | |||
Bernoulli distribution(Fig. 5) | consensus | ||
periodic consensus |
Distribution cases | Group 1(blue) | Group 2(red) | ||
Uniform (Fig. 6) | consensus | periodic consensus | ||
periodic consensus | divergence | |||
Exponential (Fig. 7) | consensus | periodic consensus | ||
periodic consensus | divergence | |||
Gamma 1(Fig. 8) | consensus | periodic consensus | ||
periodic consensus | divergence | |||
Gamma 2(Fig. 9) | consensus | periodic consensus | ||
periodic consensus | divergence | |||
Bernoulli(Fig. 10) | consensus | periodic consensus | ||
periodic consensus | divergence |
Distribution cases | Group 1(blue) | Group 2(red) | ||
Uniform (Fig. 6) | consensus | periodic consensus | ||
periodic consensus | divergence | |||
Exponential (Fig. 7) | consensus | periodic consensus | ||
periodic consensus | divergence | |||
Gamma 1(Fig. 8) | consensus | periodic consensus | ||
periodic consensus | divergence | |||
Gamma 2(Fig. 9) | consensus | periodic consensus | ||
periodic consensus | divergence | |||
Bernoulli(Fig. 10) | consensus | periodic consensus | ||
periodic consensus | divergence |
[1] |
Xiao Wang, Zhaohui Yang, Xiongwei Liu. Periodic and almost periodic oscillations in a delay differential equation system with time-varying coefficients. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6123-6138. doi: 10.3934/dcds.2017263 |
[2] |
Yanyan Hu, Fubao Xi, Min Zhu. Least squares estimation for distribution-dependent stochastic differential delay equations. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1505-1536. doi: 10.3934/cpaa.2022027 |
[3] |
Nicola Guglielmi, Christian Lubich. Numerical periodic orbits of neutral delay differential equations. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 1057-1067. doi: 10.3934/dcds.2005.13.1057 |
[4] |
P. Dormayer, A. F. Ivanov. Symmetric periodic solutions of a delay differential equation. Conference Publications, 1998, 1998 (Special) : 220-230. doi: 10.3934/proc.1998.1998.220 |
[5] |
Nguyen Thi Van Anh. On periodic solutions to a class of delay differential variational inequalities. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021045 |
[6] |
Eugenii Shustin. Exponential decay of oscillations in a multidimensional delay differential system. Conference Publications, 2003, 2003 (Special) : 809-816. doi: 10.3934/proc.2003.2003.809 |
[7] |
Xianhua Huang. Almost periodic and periodic solutions of certain dissipative delay differential equations. Conference Publications, 1998, 1998 (Special) : 301-313. doi: 10.3934/proc.1998.1998.301 |
[8] |
Amir Adibzadeh, Mohsen Zamani, Amir A. Suratgar, Mohammad B. Menhaj. Constrained optimal consensus in dynamical networks. Numerical Algebra, Control and Optimization, 2019, 9 (3) : 349-360. doi: 10.3934/naco.2019023 |
[9] |
Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369 |
[10] |
Hernán R. Henríquez, Claudio Cuevas, Alejandro Caicedo. Asymptotically periodic solutions of neutral partial differential equations with infinite delay. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2031-2068. doi: 10.3934/cpaa.2013.12.2031 |
[11] |
Miguel V. S. Frasson, Patricia H. Tacuri. Asymptotic behaviour of solutions to linear neutral delay differential equations with periodic coefficients. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1105-1117. doi: 10.3934/cpaa.2014.13.1105 |
[12] |
Joan Gimeno, Àngel Jorba. Using automatic differentiation to compute periodic orbits of delay differential equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4853-4867. doi: 10.3934/dcdsb.2020130 |
[13] |
Zhiming Guo, Xiaomin Zhang. Multiplicity results for periodic solutions to a class of second order delay differential equations. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1529-1542. doi: 10.3934/cpaa.2010.9.1529 |
[14] |
Vera Ignatenko. Homoclinic and stable periodic solutions for differential delay equations from physiology. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3637-3661. doi: 10.3934/dcds.2018157 |
[15] |
Xuan Wu, Huafeng Xiao. Periodic solutions for a class of second-order differential delay equations. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4253-4269. doi: 10.3934/cpaa.2021159 |
[16] |
Teresa Faria, Rubén Figueroa. Positive periodic solutions for systems of impulsive delay differential equations. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022070 |
[17] |
Jing Li, Gui-Quan Sun, Zhen Jin. Interactions of time delay and spatial diffusion induce the periodic oscillation of the vegetation system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2147-2172. doi: 10.3934/dcdsb.2021127 |
[18] |
Sebastián Buedo-Fernández. Global attraction in a system of delay differential equations via compact and convex sets. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3171-3181. doi: 10.3934/dcdsb.2020056 |
[19] |
Eugenii Shustin. Dynamics of oscillations in a multi-dimensional delay differential system. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 557-576. doi: 10.3934/dcds.2004.11.557 |
[20] |
István Győri, Ferenc Hartung, Nahed A. Mohamady. Boundedness of positive solutions of a system of nonlinear delay differential equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 809-836. doi: 10.3934/dcdsb.2018044 |
2020 Impact Factor: 1.213
Tools
Metrics
Other articles
by authors
[Back to Top]