• Previous Article
    Opinion fitness and convergence to consensus in homogeneous and heterogeneous populations
  • NHM Home
  • This Issue
  • Next Article
    Influence of a slow moving vehicle on traffic: Well-posedness and approximation for a mildly nonlocal model
doi: 10.3934/nhm.2021004

A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function

1. 

CI2MA and Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile

2. 

Laboratoire de Mathématiques de Versailles, UVSQ, CNRS, Université Paris-Saclay, 78035 Versailles, France

3. 

GIMNAP-Departamento de Matemáticas, Universidad del Bío-Bío, Concepción, Chile, CI2MA, Universidad de Concepción, Casilla 160-C, Concepción, Chile

* Corresponding author: R. Ordoñez

Date: January 11, 2021.

Received  October 2020 Revised  December 2020 Published  January 2021

The well-known Lighthill-Whitham-Richards (LWR) kinematic model of traffic flow models the evolution of the local density of cars by a nonlinear scalar conservation law. The transition between free and congested flow regimes can be described by a flux or velocity function that has a discontinuity at a determined density. A numerical scheme to handle the resulting LWR model with discontinuous velocity was proposed in [J.D. Towers, A splitting algorithm for LWR traffic models with flux discontinuities in the unknown, J. Comput. Phys., 421 (2020), article 109722]. A similar scheme is constructed by decomposing the discontinuous velocity function into a Lipschitz continuous function plus a Heaviside function and designing a corresponding splitting scheme. The part of the scheme related to the discontinuous flux is handled by a semi-implicit step that does, however, not involve the solution of systems of linear or nonlinear equations. It is proved that the whole scheme converges to a weak solution in the scalar case. The scheme can in a straightforward manner be extended to the multiclass LWR (MCLWR) model, which is defined by a hyperbolic system of $ N $ conservation laws for $ N $ driver classes that are distinguished by their preferential velocities. It is shown that the multiclass scheme satisfies an invariant region principle, that is, all densities are nonnegative and their sum does not exceed a maximum value. In the scalar and multiclass cases no flux regularization or Riemann solver is involved, and the CFL condition is not more restrictive than for an explicit scheme for the continuous part of the flux. Numerical tests for the scalar and multiclass cases are presented.

Citation: Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada. A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks & Heterogeneous Media, doi: 10.3934/nhm.2021004
References:
[1]

S. Benzoni-Gavage and R. M. Colombo, An $n$-populations model for traffic flow, Eur. J. Appl. Math., 14 (2003), 587-612.  doi: 10.1017/S0956792503005266.  Google Scholar

[2]

S. Benzoni-GavageR. M. Colombo and P. Gwiazda, Measure valued solutions to conservation laws motivated by traffic modelling, Proc. Royal Soc. A, 462 (2006), 1791-1803.  doi: 10.1098/rspa.2005.1649.  Google Scholar

[3]

M. BulíčekP. GwiazdaJ. Málek and A. Świerczewska-Gwiazda, On scalar hyperbolic conservation laws with a discontinuous flux, Math. Models Methods Appl. Sci., 21 (2011), 89-113.  doi: 10.1142/S021820251100499X.  Google Scholar

[4]

M. BulíčekP. Gwiazda and A. Świerczewska-Gwiazda, Multi-dimensional scalar conservation laws with fluxes discontinuous in the unknown and the spatial variable, Math. Models Methods Appl. Sci., 23 (2013), 407-439.  doi: 10.1142/S0218202512500510.  Google Scholar

[5]

R. Bürger, C. Chalons and L. M. Villada, Anti-diffusive and random-sampling Lagrangian-remap schemes for the multi-class Lighthill-Whitham-Richards traffic model, SIAM J. Sci. Comput., 35 (2013), B1341–B1368. doi: 10.1137/130923877.  Google Scholar

[6]

R. BürgerA. GarcíaK. H. Karlsen and J. D. Towers, A family of numerical schemes for kinematic flows with discontinuous flux, J. Eng. Math., 60 (2008), 387-425.  doi: 10.1007/s10665-007-9148-4.  Google Scholar

[7]

R. BürgerA. GarcíaK. H. Karlsen and J. D. Towers, Difference schemes, entropy solutions, and speedup impulse for an inhomogeneous kinematic traffic flow model, Netw. Heterog. Media, 3 (2008), 1-41.  doi: 10.3934/nhm.2008.3.1.  Google Scholar

[8]

R. BürgerK. H. KarlsenH. Torres and J. D. Towers, Second-order schemes for conservation laws with discontinuous flux modelling clarifier-thickener units, Numer. Math., 116 (2010), 579-617.  doi: 10.1007/s00211-010-0325-4.  Google Scholar

[9]

R. BürgerK. H. Karlsen and J. D. Towers, On some difference schemes and entropy conditions for a class of multi-species kinematic flow models with discontinuous flux, Netw. Heterog. Media, 5 (2010), 461-485.  doi: 10.3934/nhm.2010.5.461.  Google Scholar

[10]

R. BürgerH. Torres and C. A. Vega, An entropy stable scheme for the multiclass Lighthill-Whitham-Richards traffic model, Adv. Appl. Math. Mech., 11 (2019), 1022-1047.  doi: 10.4208/aamm.OA-2018-0189.  Google Scholar

[11]

R. BürgerP. Mulet and L. M. Villada, A diffusively corrected multiclass Lighthill-Whitham-Richards traffic model with anticipation lengths and reaction times, Adv. Appl. Math. Mech., 5 (2013), 728-758.  doi: 10.4208/aamm.2013.m135.  Google Scholar

[12]

J. Carrillo, Conservation law with discontinuous flux function and boundary condition, J. Evol. Equ., 3 (2003), 283-301.  doi: 10.1007/s00028-003-0095-x.  Google Scholar

[13]

C. Chalons and P. Goatin, Godunov scheme and sampling technique for computing phase transitions in traffic flow modeling, Interf. Free Bound., 10 (2008), 197-221.  doi: 10.4171/IFB/186.  Google Scholar

[14]

R. M. Colombo, Hyperbolic phase transitions in traffic flow, SIAM J. Appl. Math., 63 (2002), 708-721.  doi: 10.1137/S0036139901393184.  Google Scholar

[15]

J. P. Dias and M. Figueira, On the Riemann problem for some discontinuous systems of conservation laws describing phase transitions, Commun. Pure Appl. Anal., 3 (2004), 53-58.  doi: 10.3934/cpaa.2004.3.53.  Google Scholar

[16]

J. P. Dias and M. Figueira, On the approximation of the solutions of the Riemann problem for a discontinuous conservation law, Bull. Braz. Math. Soc. New Ser., 36 (2005), 115-125.  doi: 10.1007/s00574-005-0031-5.  Google Scholar

[17]

J. P. DiasM. Figueira and J. F. Rodrigues, Solutions to a scalar discontinuous conservation law in a limit case of phase transitions, J. Math. Fluid Mech., 7 (2005), 153-163.  doi: 10.1007/s00021-004-0113-y.  Google Scholar

[18]

S. Diehl, A conservation law with point source and discontinuous flux function, SIAM J. Math. Anal., 56 (1996), 388-419.  doi: 10.1137/S0036139994242425.  Google Scholar

[19]

R. Donat and P. Mulet, Characteristic-based schemes for multi-class Lighthill-Whitham-Richards traffic models, J. Sci. Comput., 37 (2008), 233-250.  doi: 10.1007/s10915-008-9209-5.  Google Scholar

[20]

R. Donat and P. Mulet, A secular equation for the Jacobian matrix of certain multi-species kinematic flow models, Numer. Methods Partial Differential Equations, 26 (2010), 159-175.  doi: 10.1002/num.20423.  Google Scholar

[21]

T. Gimse, Conservation laws with discontinuous flux functions, SIAM J. Numer. Anal., 24 (1993), 279-289.  doi: 10.1137/0524018.  Google Scholar

[22]

T. Gimse and N. H. Risebro, Solution to the Cauchy problem for a conservation law with a discontinuous flux function, SIAM J. Math. Anal., 23 (1992), 635-648.  doi: 10.1137/0523032.  Google Scholar

[23]

M. Hilliges and W. Weidlich, A phenomenological model for dynamic traffic flow in networks, Transp. Res. B, 29 (1995), 407-431.  doi: 10.1016/0191-2615(95)00018-9.  Google Scholar

[24]

H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, 2$^{nd}$ edition, Springer-Verlag, Berlin, 2015. doi: 10.1007/978-3-662-47507-2.  Google Scholar

[25]

M. J. Lighthill and G. B. Whitham, On kinematic waves: II. A theory of traffic flow on long crowded roads, Proc. Royal Soc. A, 229 (1955), 317-345.  doi: 10.1098/rspa.1955.0089.  Google Scholar

[26]

Y. LuS. WongM. Zhang and C.-W. Shu, The entropy solutions for the Lighthill-Whitham-Richards traffic flow model with a discontinuous flow-density relationship, Transp. Sci., 43 (2009), 511-530.   Google Scholar

[27]

S. Martin and J. Vovelle, Convergence of the finite volume method for scalar conservation law with discontinuous flux function, ESAIM Math. Model. Numer. Anal., 42 (2008), 699-727.  doi: 10.1051/m2an:2008023.  Google Scholar

[28]

P. I. Richards, Shock waves on the highway, Oper. Res., 4 (1956), 42-51.  doi: 10.1287/opre.4.1.42.  Google Scholar

[29]

J. D. Towers, A splitting algorithm for LWR traffic models with flux discontinuities in the unknown, J. Comput. Phys., 421 (2020), 109722, 30 pp. doi: 10.1016/j.jcp.2020.109722.  Google Scholar

[30]

J. K. WiensJ. M. Stockie and J. F. Williams, Riemann solver for a kinematic wave traffic model with discontinuous flux, J. Comput. Phys., 242 (2013), 1-23.  doi: 10.1016/j.jcp.2013.02.024.  Google Scholar

[31]

G. C. K. Wong and S. C. Wong, A multi-class traffic flow model–-an extension of LWR model with heterogeneous drivers, Transp. Res. A, 36 (2002), 827-841.  doi: 10.1016/S0965-8564(01)00042-8.  Google Scholar

[32]

P. ZhangR. X. LiuS. C. Wong and D. Q. Dai, Hyperbolicity and kinematic waves of a class of multi-population partial differential equations, Eur. J. Appl. Math., 17 (2006), 171-200.  doi: 10.1017/S095679250500642X.  Google Scholar

[33]

M. ZhangC.-W. ShuG. C. K. Wong and S. C. Wong, A weighted essentially non-oscillatory numerical scheme for a multi-class Lighthill-Whitham-Richards traffic flow model, J. Comput. Phys., 191 (2003), 639-659.  doi: 10.1016/j.jcp.2005.07.019.  Google Scholar

[34]

P. ZhangS. C. Wong and C.-W. Shu, A weighted essentially non-oscillatory numerical scheme for a multi-class traffic flow model on an inhomogeneous highway, J. Comput. Phys., 212 (2006), 739-756.  doi: 10.1016/j.jcp.2005.07.019.  Google Scholar

[35]

P. ZhangR.-X. LiuS. C. Wong and S. Q. Dai, Hyperbolicity and kinematic waves of a class of multi-population partial differential equations, Eur. J. Appl. Math., 17 (2006), 171-200.  doi: 10.1017/S095679250500642X.  Google Scholar

[36]

P. ZhangS. C. Wong and S. Q. Dai, A note on the weighted essentially non-oscillatory numerical scheme for a multi-class Lighthill-Whitham-Richards traffic flow model, Commun. Numer. Meth. Eng., 25 (2009), 1120-1126.  doi: 10.1002/cnm.1277.  Google Scholar

[37]

P. ZhangS. C. Wong and Z. Xu, A hybrid scheme for solving a multi-class traffic flow model with complex wave breaking, Comput. Methods Appl. Mech. Engrg., 197 (2008), 3816-3827.  doi: 10.1016/j.cma.2008.03.003.  Google Scholar

show all references

References:
[1]

S. Benzoni-Gavage and R. M. Colombo, An $n$-populations model for traffic flow, Eur. J. Appl. Math., 14 (2003), 587-612.  doi: 10.1017/S0956792503005266.  Google Scholar

[2]

S. Benzoni-GavageR. M. Colombo and P. Gwiazda, Measure valued solutions to conservation laws motivated by traffic modelling, Proc. Royal Soc. A, 462 (2006), 1791-1803.  doi: 10.1098/rspa.2005.1649.  Google Scholar

[3]

M. BulíčekP. GwiazdaJ. Málek and A. Świerczewska-Gwiazda, On scalar hyperbolic conservation laws with a discontinuous flux, Math. Models Methods Appl. Sci., 21 (2011), 89-113.  doi: 10.1142/S021820251100499X.  Google Scholar

[4]

M. BulíčekP. Gwiazda and A. Świerczewska-Gwiazda, Multi-dimensional scalar conservation laws with fluxes discontinuous in the unknown and the spatial variable, Math. Models Methods Appl. Sci., 23 (2013), 407-439.  doi: 10.1142/S0218202512500510.  Google Scholar

[5]

R. Bürger, C. Chalons and L. M. Villada, Anti-diffusive and random-sampling Lagrangian-remap schemes for the multi-class Lighthill-Whitham-Richards traffic model, SIAM J. Sci. Comput., 35 (2013), B1341–B1368. doi: 10.1137/130923877.  Google Scholar

[6]

R. BürgerA. GarcíaK. H. Karlsen and J. D. Towers, A family of numerical schemes for kinematic flows with discontinuous flux, J. Eng. Math., 60 (2008), 387-425.  doi: 10.1007/s10665-007-9148-4.  Google Scholar

[7]

R. BürgerA. GarcíaK. H. Karlsen and J. D. Towers, Difference schemes, entropy solutions, and speedup impulse for an inhomogeneous kinematic traffic flow model, Netw. Heterog. Media, 3 (2008), 1-41.  doi: 10.3934/nhm.2008.3.1.  Google Scholar

[8]

R. BürgerK. H. KarlsenH. Torres and J. D. Towers, Second-order schemes for conservation laws with discontinuous flux modelling clarifier-thickener units, Numer. Math., 116 (2010), 579-617.  doi: 10.1007/s00211-010-0325-4.  Google Scholar

[9]

R. BürgerK. H. Karlsen and J. D. Towers, On some difference schemes and entropy conditions for a class of multi-species kinematic flow models with discontinuous flux, Netw. Heterog. Media, 5 (2010), 461-485.  doi: 10.3934/nhm.2010.5.461.  Google Scholar

[10]

R. BürgerH. Torres and C. A. Vega, An entropy stable scheme for the multiclass Lighthill-Whitham-Richards traffic model, Adv. Appl. Math. Mech., 11 (2019), 1022-1047.  doi: 10.4208/aamm.OA-2018-0189.  Google Scholar

[11]

R. BürgerP. Mulet and L. M. Villada, A diffusively corrected multiclass Lighthill-Whitham-Richards traffic model with anticipation lengths and reaction times, Adv. Appl. Math. Mech., 5 (2013), 728-758.  doi: 10.4208/aamm.2013.m135.  Google Scholar

[12]

J. Carrillo, Conservation law with discontinuous flux function and boundary condition, J. Evol. Equ., 3 (2003), 283-301.  doi: 10.1007/s00028-003-0095-x.  Google Scholar

[13]

C. Chalons and P. Goatin, Godunov scheme and sampling technique for computing phase transitions in traffic flow modeling, Interf. Free Bound., 10 (2008), 197-221.  doi: 10.4171/IFB/186.  Google Scholar

[14]

R. M. Colombo, Hyperbolic phase transitions in traffic flow, SIAM J. Appl. Math., 63 (2002), 708-721.  doi: 10.1137/S0036139901393184.  Google Scholar

[15]

J. P. Dias and M. Figueira, On the Riemann problem for some discontinuous systems of conservation laws describing phase transitions, Commun. Pure Appl. Anal., 3 (2004), 53-58.  doi: 10.3934/cpaa.2004.3.53.  Google Scholar

[16]

J. P. Dias and M. Figueira, On the approximation of the solutions of the Riemann problem for a discontinuous conservation law, Bull. Braz. Math. Soc. New Ser., 36 (2005), 115-125.  doi: 10.1007/s00574-005-0031-5.  Google Scholar

[17]

J. P. DiasM. Figueira and J. F. Rodrigues, Solutions to a scalar discontinuous conservation law in a limit case of phase transitions, J. Math. Fluid Mech., 7 (2005), 153-163.  doi: 10.1007/s00021-004-0113-y.  Google Scholar

[18]

S. Diehl, A conservation law with point source and discontinuous flux function, SIAM J. Math. Anal., 56 (1996), 388-419.  doi: 10.1137/S0036139994242425.  Google Scholar

[19]

R. Donat and P. Mulet, Characteristic-based schemes for multi-class Lighthill-Whitham-Richards traffic models, J. Sci. Comput., 37 (2008), 233-250.  doi: 10.1007/s10915-008-9209-5.  Google Scholar

[20]

R. Donat and P. Mulet, A secular equation for the Jacobian matrix of certain multi-species kinematic flow models, Numer. Methods Partial Differential Equations, 26 (2010), 159-175.  doi: 10.1002/num.20423.  Google Scholar

[21]

T. Gimse, Conservation laws with discontinuous flux functions, SIAM J. Numer. Anal., 24 (1993), 279-289.  doi: 10.1137/0524018.  Google Scholar

[22]

T. Gimse and N. H. Risebro, Solution to the Cauchy problem for a conservation law with a discontinuous flux function, SIAM J. Math. Anal., 23 (1992), 635-648.  doi: 10.1137/0523032.  Google Scholar

[23]

M. Hilliges and W. Weidlich, A phenomenological model for dynamic traffic flow in networks, Transp. Res. B, 29 (1995), 407-431.  doi: 10.1016/0191-2615(95)00018-9.  Google Scholar

[24]

H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, 2$^{nd}$ edition, Springer-Verlag, Berlin, 2015. doi: 10.1007/978-3-662-47507-2.  Google Scholar

[25]

M. J. Lighthill and G. B. Whitham, On kinematic waves: II. A theory of traffic flow on long crowded roads, Proc. Royal Soc. A, 229 (1955), 317-345.  doi: 10.1098/rspa.1955.0089.  Google Scholar

[26]

Y. LuS. WongM. Zhang and C.-W. Shu, The entropy solutions for the Lighthill-Whitham-Richards traffic flow model with a discontinuous flow-density relationship, Transp. Sci., 43 (2009), 511-530.   Google Scholar

[27]

S. Martin and J. Vovelle, Convergence of the finite volume method for scalar conservation law with discontinuous flux function, ESAIM Math. Model. Numer. Anal., 42 (2008), 699-727.  doi: 10.1051/m2an:2008023.  Google Scholar

[28]

P. I. Richards, Shock waves on the highway, Oper. Res., 4 (1956), 42-51.  doi: 10.1287/opre.4.1.42.  Google Scholar

[29]

J. D. Towers, A splitting algorithm for LWR traffic models with flux discontinuities in the unknown, J. Comput. Phys., 421 (2020), 109722, 30 pp. doi: 10.1016/j.jcp.2020.109722.  Google Scholar

[30]

J. K. WiensJ. M. Stockie and J. F. Williams, Riemann solver for a kinematic wave traffic model with discontinuous flux, J. Comput. Phys., 242 (2013), 1-23.  doi: 10.1016/j.jcp.2013.02.024.  Google Scholar

[31]

G. C. K. Wong and S. C. Wong, A multi-class traffic flow model–-an extension of LWR model with heterogeneous drivers, Transp. Res. A, 36 (2002), 827-841.  doi: 10.1016/S0965-8564(01)00042-8.  Google Scholar

[32]

P. ZhangR. X. LiuS. C. Wong and D. Q. Dai, Hyperbolicity and kinematic waves of a class of multi-population partial differential equations, Eur. J. Appl. Math., 17 (2006), 171-200.  doi: 10.1017/S095679250500642X.  Google Scholar

[33]

M. ZhangC.-W. ShuG. C. K. Wong and S. C. Wong, A weighted essentially non-oscillatory numerical scheme for a multi-class Lighthill-Whitham-Richards traffic flow model, J. Comput. Phys., 191 (2003), 639-659.  doi: 10.1016/j.jcp.2005.07.019.  Google Scholar

[34]

P. ZhangS. C. Wong and C.-W. Shu, A weighted essentially non-oscillatory numerical scheme for a multi-class traffic flow model on an inhomogeneous highway, J. Comput. Phys., 212 (2006), 739-756.  doi: 10.1016/j.jcp.2005.07.019.  Google Scholar

[35]

P. ZhangR.-X. LiuS. C. Wong and S. Q. Dai, Hyperbolicity and kinematic waves of a class of multi-population partial differential equations, Eur. J. Appl. Math., 17 (2006), 171-200.  doi: 10.1017/S095679250500642X.  Google Scholar

[36]

P. ZhangS. C. Wong and S. Q. Dai, A note on the weighted essentially non-oscillatory numerical scheme for a multi-class Lighthill-Whitham-Richards traffic flow model, Commun. Numer. Meth. Eng., 25 (2009), 1120-1126.  doi: 10.1002/cnm.1277.  Google Scholar

[37]

P. ZhangS. C. Wong and Z. Xu, A hybrid scheme for solving a multi-class traffic flow model with complex wave breaking, Comput. Methods Appl. Mech. Engrg., 197 (2008), 3816-3827.  doi: 10.1016/j.cma.2008.03.003.  Google Scholar

Figure 1.  (a) Piecewise continuous velocity function $ V(\phi) $ with discontinuity at $ \phi = \phi^* $, (b) continuous and discontinuous portions $ p_V(\phi) $ (solid line) and $ g_V(\phi) $ (dashed line)
Figure 2.  (a) function $ z \mapsto \smash{\tilde{G}_V}(z;\phi) $ given by (2.9a) with $ \lambda v^{\max} = 1/2 $, $ \alpha_V = 0.3 $, and $ \phi = 0.8 $, (b) its inverse $ z \mapsto \smash{\tilde{G}_V^{-1}} (z;\phi) $ given by (2.9b)
Figure 3.  Example 1: numerical solution with $ M = 800 $ and comparison with the exact solution of the Riemann problem (a) with $ \phi_{\mathrm{L}} = 0.3 $ and $ \phi_{\mathrm{R}} = 0.9 $ at simulated time $ T = 1.8 $, (b) with $ \phi_{\mathrm{L}} = 0.9 $ and $ \phi_{\mathrm{R}} = 0.3 $ at simulated time $ T = 1.5 $. Here and in Figures 4 and 5 we label with 'Towers scheme' the scheme (1.7) proposed in [29] and by 'BCOV scheme' the scheme of Algorithm 2.1 advanced in the present work
Figure 4.  Example 2: numerical solutions for $ M = 100 $ at simulated times (a) $ T = 0.1 $, (b) $ T = 0.3 $
Figure 5.  Example 3: numerical solutions depending on the boundary conditions $ \mathcal{F}(t)\in\smash{\tilde{f}}(\phi^*) $ with $ M = 1600 $ at simulated time $ T = 0.5 $, with (a) $ \smash{\mathcal{F}(t)\in\tilde{f}}(\phi^*-) $ (free flow), (b) $ \mathcal{F}(t)\in\smash{\tilde{f}} (\phi^*+) $ (congested flow)
Figure 6.  Example 4: density profiles simulated with $ M = 1600 $ at (a) $ T = 0.2 $, (b) $ T = 0.4 $, (c) $ T = 0.6 $
Figure 7.  Example 5: numerical solution for a free-flow regime ($ \mathcal{G}(t) = \alpha_V $): (a) initial condition, (b, c) density profiles with $ M = 1600 $ at simulated times (b) $ T = 0.1, $ (c) $ T = 0.2 $
Figure 8.  Example 5: simulated total density computed with BCOV scheme with $ N = 3 $ and $ M = 1600 $: (a) free flow ($ \mathcal{G}(t) = \alpha_V $), (b) congested flow ($ \mathcal{G}(t) = 0 $)
Figure 9.  Example 5: numerical solution for a congested flow regime ($ \mathcal{G}(t) = 0 $): density profiles with $ M = 1600 $ at simulated times (a) $ T = 0.1, $ (b) $ T = 0.2 $. The initial condition is the same as in Figure 7(a)
Figure 10.  Example 6: numerical solutions obtained with BCOV scheme with $ N = 5 $ and $ M = 1600 $ at simulated times (a) $ T = 0.02 $, (b) $ T = 0.12 $
Figure 11.  Example 6: simulated total density obtained with BCOV scheme with $ N = 5 $ and $ M = 1600 $: (a) discontinuous problem, (b) continuous problem
Figure 12.  Example 6: comparison of reference solution ($ M_{\text{ref}} = 12800 $) with approximate solutions computed by BCOV scheme with $ M = 100 $ at simulated time $ T = 0.02 $
Figure 13.  Example 6: comparison of reference solution ($ M_{\text{ref}} = 12800 $) with approximate solutions computed by BCOV scheme with $ M = 100 $ at simulated time $ T = 0.02 $
Figure 14.  Example 7: numerical solution computed with BCOV scheme with $ N = 5 $ and $ M = 12800 $ at simulated times (a) $ T = 0.1 $, (b) $ T = 0.2 $ and (c) $ T = 0.3 $
Figure 15.  Example 7: simulated total density computed with BCOV scheme with $ N = 5 $ and $ M = 1600 $
Table 1.  Example 2: approximate $ L^1 $ errors $ e_{M}(u) $ with $ \Delta x = 2/M $
$ T=0.1 $ $ T=0.3 $
Towers BCOV Towers BCOV
$ M $ $ e_{M}(\phi^{\Delta}) $ $ e_{M}(\phi^{\Delta}) $ $ e_{M}(\phi^{\Delta}) $ $ e_{M}(\phi^{\Delta}) $
100 1.32e-2 1.76e-2 1.63e-2 2.39e-2
200 6.55e-3 9.22e-3 8.59e-3 1.31e-2
400 3.29e-3 4.46e-3 4.25e-3 6.46e-3
800 1.72e-3 2.403-3 2.12e-3 3.31e-3
1600 8.00e-4 1.18e-3 9.29e-4 1.563-3
$ T=0.1 $ $ T=0.3 $
Towers BCOV Towers BCOV
$ M $ $ e_{M}(\phi^{\Delta}) $ $ e_{M}(\phi^{\Delta}) $ $ e_{M}(\phi^{\Delta}) $ $ e_{M}(\phi^{\Delta}) $
100 1.32e-2 1.76e-2 1.63e-2 2.39e-2
200 6.55e-3 9.22e-3 8.59e-3 1.31e-2
400 3.29e-3 4.46e-3 4.25e-3 6.46e-3
800 1.72e-3 2.403-3 2.12e-3 3.31e-3
1600 8.00e-4 1.18e-3 9.29e-4 1.563-3
Table 2.  Example 6: approximate $ L^1 $ errors $ e_{M}(u) $ with $ \Delta x = 2/M $
$ T=0.02 $ $ T=0.12 $
$ M $ $ e_{M}(\phi^{\Delta}) $ $ e_{M}(\phi^{\Delta}) $
100 1.39e-2 3.87e-2
200 7.90e-3 2.47e-2
400 4.20e-3 1.55e-2
800 2.00e-3 9.20e-3
1600 1.00e-3 5.10e-3
$ T=0.02 $ $ T=0.12 $
$ M $ $ e_{M}(\phi^{\Delta}) $ $ e_{M}(\phi^{\Delta}) $
100 1.39e-2 3.87e-2
200 7.90e-3 2.47e-2
400 4.20e-3 1.55e-2
800 2.00e-3 9.20e-3
1600 1.00e-3 5.10e-3
Table 3.  Example 7: Approximate $ L^1 $ errors $ e_{M}(u) $ with $ \Delta x = 5/M $
$ T=0.1 $ $ T=0.2 $ $ T=0.3 $
$ M $ $ e_{M}(\phi^{\Delta}) $ $ e_{M}(\phi^{\Delta}) $ $ e_{M}(\phi^{\Delta}) $
100 7.42e-2 9.50e-2 1.06e-1
200 4.12e-2 5.50e-2 6.49e-2
400 2.27e-2 3.34e-2 3.88e-2
800 1.24e-2 1.97-2 2.35e-2
1600 6.50e-3 1.10e-2 1.35e-2
$ T=0.1 $ $ T=0.2 $ $ T=0.3 $
$ M $ $ e_{M}(\phi^{\Delta}) $ $ e_{M}(\phi^{\Delta}) $ $ e_{M}(\phi^{\Delta}) $
100 7.42e-2 9.50e-2 1.06e-1
200 4.12e-2 5.50e-2 6.49e-2
400 2.27e-2 3.34e-2 3.88e-2
800 1.24e-2 1.97-2 2.35e-2
1600 6.50e-3 1.10e-2 1.35e-2
[1]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[2]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[3]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[4]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[5]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[6]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[7]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[8]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[9]

Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209

[10]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011

[11]

Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021018

[12]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[13]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[14]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[15]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[16]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[17]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[18]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020401

[19]

Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051

[20]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (45)
  • HTML views (88)
  • Cited by (0)

[Back to Top]