
- Previous Article
- NHM Home
- This Issue
-
Next Article
A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function
Opinion fitness and convergence to consensus in homogeneous and heterogeneous populations
1. | Departamento de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, C/ Tarfia s/n, and Instituto de Matemáticas Antonio de Castro Brzezicki, Edificio Celestino Mutis, Avda. de la Reina Mercedes s/n, Universidad de Sevilla, Campus de Reina Mercedes, (41012) Sevilla, Spain |
2. | IMAS UBA-CONICET and Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Av Cantilo s/n, Ciudad Universitaria, (1428) Buenos Aires, Argentina |
In this work we study the formation of consensus in homogeneous and heterogeneous populations, and the effect of attractiveness or fitness of the opinions. We derive the corresponding kinetic equations, analyze the long time behavior of their solutions, and characterize the consensus opinion.
References:
[1] |
G. Aletti, A. K. Naimzada and G. Naldi., Mathematics and physics applications in sociodynamics simulation: The case of opinion formation and diffusion, Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Birkhäuser Boston, (2010), 203–221.
doi: 10.1007/978-0-8176-4946-3_8. |
[2] |
G. Aletti, G. Naldi and G. Toscani,
First-order continuous models of opinion formation, SIAM J. Appl. Math., 67 (2007), 837-853.
doi: 10.1137/060658679. |
[3] |
S. E. Asch,
Opinions and social pressure, Scientific American, 193 (1955), 31-35.
doi: 10.1038/scientificamerican1155-31. |
[4] |
R. B. Ash, Real Analysis and Probability, Probability and Mathematical Statistics, Academic Press, New York-London, 1972. |
[5] |
P. Balenzuela, J. P. Pinasco and V. Semeshenko, The undecided have the key: Interaction driven opinion dynamics in a three state model, PLoS ONE, 10 (2016), e0139572, 1–21. Google Scholar |
[6] |
B. O. Baumgaertner, R. C. Tyson and S. M. Krone,
Opinion strength influences the spatial dynamics of opinion formation, The Journal of Mathematical Sociology, 40 (2016), 207-218.
doi: 10.1080/0022250X.2016.1205049. |
[7] |
B. O. Baumgaertner, P. A. Fetros, R. C. Tyson and S. M. Krone, Spatial Opinion Dynamics and the Efects of Two Types of Mixing, Phys Rev E., 98 (2018), 022310. Google Scholar |
[8] |
N. Bellomo, Modeling Complex Living Systems A Kinetic Theory and Stochastic Game Approach, Birkhauser, 2008. |
[9] |
N. Bellomo, G. Ajmone Marsan and A. Tosin, Complex Systems and Society. Modeling and Simulation, SpringerBriefs in Mathematics, 2013.
doi: 10.1007/978-1-4614-7242-1. |
[10] |
K. C. Border and C. D. Aliprantis, Infinite Dimensional Analysis - A Hitchhiker's Guide, 3rd Edition, Springer, 2006. |
[11] |
E. Burnstein and A. Vinokur,
What a person thinks upon learning he has chosen differently from others: Nice evidence for the persuasive-arguments explanation of choice shifts, Journal of Experimental Social Psychology, 11 (1975), 412-426.
doi: 10.1016/0022-1031(75)90045-1. |
[12] |
J. A. Cañizo, J. A. Carrillo and J. Rosado,
A well-posedness theory in measures for some kinetic models of collective motion, Mathematical Models and Methods in Applied Sciences, 21 (2011), 515-539.
doi: 10.1142/S0218202511005131. |
[13] |
R. B. Cialdini and M. R. Trost, Social influence: Social norms, conformity and compliance, The Handbook of Social Psychology, McGraw-Hill, (1998), 151–192. Google Scholar |
[14] |
F. Cucker and S. Smale,
Emergent behavior in flocks, IEEE Transactions on Automatic Control, 52 (2007), 852-862.
doi: 10.1109/TAC.2007.895842. |
[15] |
G. Deffuant, D. Neau, F. Amblard and G. Weisbuch,
Mixing beliefs among interacting agents, Advances in Complex Systems, 3 (2000), 87-98.
doi: 10.1142/S0219525900000078. |
[16] |
P. Embrechts and M. Hofert,
A note on generalized inverse, Mathematical Methods of Operations Research, 77 (2013), 423-432.
doi: 10.1007/s00186-013-0436-7. |
[17] |
N. E. Friedkin and E. C. Johnsen,
Social influence and opinions, Journal of Mathematical Sociology, 15 (1990), 193-206.
doi: 10.1080/0022250X.1990.9990069. |
[18] |
T. Fujimoto, A simple model of consensus formation, Okayama Economic Review, 31 (1999), 95-100. Google Scholar |
[19] |
S. Galam, Sociophysics: A Physicist's Modeling of Psycho-Political Phenomena, , Springer Science & Business Media, 2012.
doi: 10.1007/978-1-4614-2032-3. |
[20] |
R. Hegselmann and U. Krause, Opinion dynamics and bounded confidence: Models, analysis and simulation, Journal of Artificial Societies and Social Simulation, 5 (2002). Google Scholar |
[21] |
R. A. Holley and T. M. Liggett,
Ergodic theorems for weakly interacting infinite systems and the voter model, The Annals of Probability, 3 (1975), 643-663.
doi: 10.1214/aop/1176996306. |
[22] |
C. La Rocca, L. A. Braunstein and F. Vázquez, The influence of persuasion in opinion formation and polarization, Europhys. Letters, 106 (2014), 40004.
doi: 10.1209/0295-5075/106/40004. |
[23] |
B. Latané, The psychology of social impact, American Psychologist, 36 (1981), 343-356. Google Scholar |
[24] |
J. Lorenz,
Continuous opinion dynamics under bounded confidence: A survey, International Journal of Modern Physics C, 18 (2007), 1819-1838.
doi: 10.1142/S0129183107011789. |
[25] |
M. Mäs and A. Flache, Differentiation without distancing. Explaining bi-polarization of opinions without negative influence, PloS one, 8 (2013), e74516. Google Scholar |
[26] |
P. Milgrom and I. Segal,
Envelope theorems for arbitrary choice sets, Econometrica, 70 (2002), 583-601.
doi: 10.1111/1468-0262.00296. |
[27] |
R. Ochrombel,
Simulation of Sznajd sociophysics model with convincing single opinions, International Journal of Modern Physics C, 12 (2001), 1091-1092.
doi: 10.1142/S0129183101002346. |
[28] | L. Pareschi and G. Toscani, Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods, Oxford University Press, Oxford, 2014. Google Scholar |
[29] |
L. Pedraza, J. P. Pinasco and N. Saintier,
Measure-valued opinion dynamics, M3AS: Mathematical Models and Methods in Applied Sciences, 30 (2020), 225-260.
doi: 10.1142/S0218202520500062. |
[30] |
M. Pérez-Llanos, J. P. Pinasco and N. Saintier, Opinion attractiveness and its effect in opinion formation models, Phys. A, 559 (2020), 125017, 9 pp.
doi: 10.1016/j.physa.2020.125017. |
[31] |
M. Pŕez-Llanos, J. P. Pinasco, N. Saintier and A. Silva,
Opinion formation models with heterogeneous persuasion and zealotry, SIAM Journal on Mathematical Analysis, 50 (2018), 4812-4837.
doi: 10.1137/17M1152784. |
[32] |
F. Vazquez, N. Saintier and J. P. Pinasco, The role of voting intention in public opinion polarization, Phys. Rev. E, 101 (2020), 012101, 13pp. |
[33] |
N. Saintier, J. P. Pinasco and F. Vazquez, A model for a phase transition between political mono-polarization and bi-polarization, Chaos: An Interdisciplinary Journal of Nonlinear Science, 30 (2020), 063146, 17 pp.
doi: 10.1063/5.0004996. |
[34] |
J. P. Pinasco, V. Semeshenko and P. Balenzuela,
Modeling opinion dynamics: Theoretical analysis and continuous approximation, Chaos, Solitons & Fractals, 98 (2017), 210-215.
doi: 10.1016/j.chaos.2017.03.033. |
[35] |
F. Slanina and H. Lavicka, Analytical results for the Sznajd model of opinion formation, The European Physical Journal B, 35 (2003) 279–288.
doi: 10.1140/epjb/e2003-00278-0. |
[36] |
D. W. Stroock, Probability Theory, An Analytic View, Cambridge University Press, 1993.
![]() |
[37] |
K. Sznajd-Weron and J. Sznajd,
Opinion evolution in closed community, International Journal of Modern Physics - C, 11 (2000), 1157-1165.
doi: 10.1142/S0129183100000936. |
[38] |
G. Toscani,
Kinetic models of opinion formation, Communications in Mathematical Sciences, 4 (2006), 481-496.
doi: 10.4310/CMS.2006.v4.n3.a1. |
[39] |
C. Villani, Topics in optimal transportation, Grad.Studies in Math., American Mathematical Soc., (2003).
doi: 10.1090/gsm/058. |
show all references
References:
[1] |
G. Aletti, A. K. Naimzada and G. Naldi., Mathematics and physics applications in sociodynamics simulation: The case of opinion formation and diffusion, Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Birkhäuser Boston, (2010), 203–221.
doi: 10.1007/978-0-8176-4946-3_8. |
[2] |
G. Aletti, G. Naldi and G. Toscani,
First-order continuous models of opinion formation, SIAM J. Appl. Math., 67 (2007), 837-853.
doi: 10.1137/060658679. |
[3] |
S. E. Asch,
Opinions and social pressure, Scientific American, 193 (1955), 31-35.
doi: 10.1038/scientificamerican1155-31. |
[4] |
R. B. Ash, Real Analysis and Probability, Probability and Mathematical Statistics, Academic Press, New York-London, 1972. |
[5] |
P. Balenzuela, J. P. Pinasco and V. Semeshenko, The undecided have the key: Interaction driven opinion dynamics in a three state model, PLoS ONE, 10 (2016), e0139572, 1–21. Google Scholar |
[6] |
B. O. Baumgaertner, R. C. Tyson and S. M. Krone,
Opinion strength influences the spatial dynamics of opinion formation, The Journal of Mathematical Sociology, 40 (2016), 207-218.
doi: 10.1080/0022250X.2016.1205049. |
[7] |
B. O. Baumgaertner, P. A. Fetros, R. C. Tyson and S. M. Krone, Spatial Opinion Dynamics and the Efects of Two Types of Mixing, Phys Rev E., 98 (2018), 022310. Google Scholar |
[8] |
N. Bellomo, Modeling Complex Living Systems A Kinetic Theory and Stochastic Game Approach, Birkhauser, 2008. |
[9] |
N. Bellomo, G. Ajmone Marsan and A. Tosin, Complex Systems and Society. Modeling and Simulation, SpringerBriefs in Mathematics, 2013.
doi: 10.1007/978-1-4614-7242-1. |
[10] |
K. C. Border and C. D. Aliprantis, Infinite Dimensional Analysis - A Hitchhiker's Guide, 3rd Edition, Springer, 2006. |
[11] |
E. Burnstein and A. Vinokur,
What a person thinks upon learning he has chosen differently from others: Nice evidence for the persuasive-arguments explanation of choice shifts, Journal of Experimental Social Psychology, 11 (1975), 412-426.
doi: 10.1016/0022-1031(75)90045-1. |
[12] |
J. A. Cañizo, J. A. Carrillo and J. Rosado,
A well-posedness theory in measures for some kinetic models of collective motion, Mathematical Models and Methods in Applied Sciences, 21 (2011), 515-539.
doi: 10.1142/S0218202511005131. |
[13] |
R. B. Cialdini and M. R. Trost, Social influence: Social norms, conformity and compliance, The Handbook of Social Psychology, McGraw-Hill, (1998), 151–192. Google Scholar |
[14] |
F. Cucker and S. Smale,
Emergent behavior in flocks, IEEE Transactions on Automatic Control, 52 (2007), 852-862.
doi: 10.1109/TAC.2007.895842. |
[15] |
G. Deffuant, D. Neau, F. Amblard and G. Weisbuch,
Mixing beliefs among interacting agents, Advances in Complex Systems, 3 (2000), 87-98.
doi: 10.1142/S0219525900000078. |
[16] |
P. Embrechts and M. Hofert,
A note on generalized inverse, Mathematical Methods of Operations Research, 77 (2013), 423-432.
doi: 10.1007/s00186-013-0436-7. |
[17] |
N. E. Friedkin and E. C. Johnsen,
Social influence and opinions, Journal of Mathematical Sociology, 15 (1990), 193-206.
doi: 10.1080/0022250X.1990.9990069. |
[18] |
T. Fujimoto, A simple model of consensus formation, Okayama Economic Review, 31 (1999), 95-100. Google Scholar |
[19] |
S. Galam, Sociophysics: A Physicist's Modeling of Psycho-Political Phenomena, , Springer Science & Business Media, 2012.
doi: 10.1007/978-1-4614-2032-3. |
[20] |
R. Hegselmann and U. Krause, Opinion dynamics and bounded confidence: Models, analysis and simulation, Journal of Artificial Societies and Social Simulation, 5 (2002). Google Scholar |
[21] |
R. A. Holley and T. M. Liggett,
Ergodic theorems for weakly interacting infinite systems and the voter model, The Annals of Probability, 3 (1975), 643-663.
doi: 10.1214/aop/1176996306. |
[22] |
C. La Rocca, L. A. Braunstein and F. Vázquez, The influence of persuasion in opinion formation and polarization, Europhys. Letters, 106 (2014), 40004.
doi: 10.1209/0295-5075/106/40004. |
[23] |
B. Latané, The psychology of social impact, American Psychologist, 36 (1981), 343-356. Google Scholar |
[24] |
J. Lorenz,
Continuous opinion dynamics under bounded confidence: A survey, International Journal of Modern Physics C, 18 (2007), 1819-1838.
doi: 10.1142/S0129183107011789. |
[25] |
M. Mäs and A. Flache, Differentiation without distancing. Explaining bi-polarization of opinions without negative influence, PloS one, 8 (2013), e74516. Google Scholar |
[26] |
P. Milgrom and I. Segal,
Envelope theorems for arbitrary choice sets, Econometrica, 70 (2002), 583-601.
doi: 10.1111/1468-0262.00296. |
[27] |
R. Ochrombel,
Simulation of Sznajd sociophysics model with convincing single opinions, International Journal of Modern Physics C, 12 (2001), 1091-1092.
doi: 10.1142/S0129183101002346. |
[28] | L. Pareschi and G. Toscani, Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods, Oxford University Press, Oxford, 2014. Google Scholar |
[29] |
L. Pedraza, J. P. Pinasco and N. Saintier,
Measure-valued opinion dynamics, M3AS: Mathematical Models and Methods in Applied Sciences, 30 (2020), 225-260.
doi: 10.1142/S0218202520500062. |
[30] |
M. Pérez-Llanos, J. P. Pinasco and N. Saintier, Opinion attractiveness and its effect in opinion formation models, Phys. A, 559 (2020), 125017, 9 pp.
doi: 10.1016/j.physa.2020.125017. |
[31] |
M. Pŕez-Llanos, J. P. Pinasco, N. Saintier and A. Silva,
Opinion formation models with heterogeneous persuasion and zealotry, SIAM Journal on Mathematical Analysis, 50 (2018), 4812-4837.
doi: 10.1137/17M1152784. |
[32] |
F. Vazquez, N. Saintier and J. P. Pinasco, The role of voting intention in public opinion polarization, Phys. Rev. E, 101 (2020), 012101, 13pp. |
[33] |
N. Saintier, J. P. Pinasco and F. Vazquez, A model for a phase transition between political mono-polarization and bi-polarization, Chaos: An Interdisciplinary Journal of Nonlinear Science, 30 (2020), 063146, 17 pp.
doi: 10.1063/5.0004996. |
[34] |
J. P. Pinasco, V. Semeshenko and P. Balenzuela,
Modeling opinion dynamics: Theoretical analysis and continuous approximation, Chaos, Solitons & Fractals, 98 (2017), 210-215.
doi: 10.1016/j.chaos.2017.03.033. |
[35] |
F. Slanina and H. Lavicka, Analytical results for the Sznajd model of opinion formation, The European Physical Journal B, 35 (2003) 279–288.
doi: 10.1140/epjb/e2003-00278-0. |
[36] |
D. W. Stroock, Probability Theory, An Analytic View, Cambridge University Press, 1993.
![]() |
[37] |
K. Sznajd-Weron and J. Sznajd,
Opinion evolution in closed community, International Journal of Modern Physics - C, 11 (2000), 1157-1165.
doi: 10.1142/S0129183100000936. |
[38] |
G. Toscani,
Kinetic models of opinion formation, Communications in Mathematical Sciences, 4 (2006), 481-496.
doi: 10.4310/CMS.2006.v4.n3.a1. |
[39] |
C. Villani, Topics in optimal transportation, Grad.Studies in Math., American Mathematical Soc., (2003).
doi: 10.1090/gsm/058. |



[1] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[2] |
Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021017 |
[3] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[4] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448 |
[5] |
Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294 |
[6] |
Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042 |
[7] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[8] |
Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190 |
[9] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[10] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[11] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[12] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[13] |
Jumpei Inoue, Kousuke Kuto. On the unboundedness of the ratio of species and resources for the diffusive logistic equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2441-2450. doi: 10.3934/dcdsb.2020186 |
[14] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[15] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[16] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[17] |
Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454 |
[18] |
Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025 |
[19] |
Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021021 |
[20] |
Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511 |
2019 Impact Factor: 1.053
Tools
Metrics
Other articles
by authors
[Back to Top]