June  2021, 16(2): 317-339. doi: 10.3934/nhm.2021008

An inverse problem for quantum trees with observations at interior vertices

1. 

Department of Mathematics and Statistics, University of Alaska at Fairbanks, Fairbanks, AK 99775, USA

2. 

Department of Mathematics and Statistics, Florida International University, Miami, FL 33199, USA

* Corresponding author: Julian Edward

Received  April 2020 Revised  January 2021 Published  June 2021 Early access  March 2021

Fund Project: The first author was supported in part by the National Science Foundation, grant DMS 1909869

In this paper we consider a non-standard dynamical inverse problem for the wave equation on a metric tree graph. We assume that positive masses may be attached to the internal vertices of the graph. Another specific feature of our investigation is that we use only one boundary actuator and one boundary sensor, all other observations being internal. Using the Dirichlet-to-Neumann map (acting from one boundary vertex to one boundary and all internal vertices) we recover the topology and geometry of the graph, the coefficients of the equations and the masses at the vertices.

Citation: Sergei Avdonin, Julian Edward. An inverse problem for quantum trees with observations at interior vertices. Networks and Heterogeneous Media, 2021, 16 (2) : 317-339. doi: 10.3934/nhm.2021008
References:
[1]

S. AdamE. H. HwangV. M. Galitski and S. Das Sarma, A self-consistent theory for graphene transports, Proc. Natl. Acad. Sci. USA, 104 (2007), 18392-18397.  doi: 10.1073/pnas.0704772104.

[2]

F. Al-MusallamS. A. AvdoninN. Avdonina and J. Edward, Control and inverse problems for networks of vibrating strings with attached masses, Nanosystems: Physics, Chemistry, and Mathematics, 7 (2016), 835-841.  doi: 10.17586/2220-8054-2016-7-5-835-841.

[3]

G. AlìA. Bartel and M. Günther, Parabolic differential-algebraic models in electrical network design, Multiscale Model. Simul., 4 (2005), 813-838.  doi: 10.1137/040610696.

[4]

S. Avdonin, Control, observation and identification problems for the wave equation on metric graphs, IFAC-PapersOnLine, 52 (2019), 52-57.  doi: 10.1016/j.ifacol.2019.08.010.

[5]

S. Avdonin, Using hyperbolic systems of balance laws for modeling, control and stability analysis of physical networks, in Analysis on Graphs and Its Applications (Proceedings of Symposia in Pure Mathematics), 77, AMS, Providence, RI, 2008,507–521.

[6]

S. Avdonin, N. Avdonina and J. Edward, Boundary inverse problems for networks of vibrating strings with attached masses, in Dynamic Systems and Applications, 7, Dynamic, Atlanta, GA, 2016, 41–44.

[7]

S. Avdonin and J. Bell, Determining a distributed conductance parameter for a neuronal cable model defined on a tree graph, Inverse Probl. Imaging, 9 (2015), 645-659.  doi: 10.3934/ipi.2015.9.645.

[8]

S. Avdonin and J. Edward, An inverse problem for quantum trees with delta-prime vertex conditions, Vibration, 3 (2020), 448-463.  doi: 10.3390/vibration3040028.

[9]

S. Avdonin and J. Edward, Controllability for a string with attached masses and Riesz bases for asymmetric spaces, Math. Control Relat. Fields, 9 (2019), 453-494.  doi: 10.3934/mcrf.2019021.

[10]

S. Avdonin and J. Edward, Exact controllability for string with attached masses, SIAM J. Control Optim., 56 (2018), 945-980.  doi: 10.1137/15M1029333.

[11]

S. Avdonin and P. Kurasov, Inverse problems for quantum trees, Inverse Probl. Imaging, 2 (2008), 1-21.  doi: 10.3934/ipi.2008.2.1.

[12]

S. AvdoninP. Kurasov and M. Novaczyk, Inverse problems for quantum trees II: Recovering matching conditions for star graphs, Inverse Probl. Imaging, 4 (2010), 579-598.  doi: 10.3934/ipi.2010.4.579.

[13]

S. AvdoninG. Leugering and V. Mikhaylov, On an inverse problem for tree-like networks of elastic strings, ZAMM Z. Angew. Math. Mech., 90 (2010), 136-150.  doi: 10.1002/zamm.200900295.

[14]

S. Avdonin and V. Mikhaylov, The boundary control approach to inverse spectral theory, Inverse Problems, 26 (2010), 19pp. doi: 10.1088/0266-5611/26/4/045009.

[15]

S. Avdonin and S. Nicaise, Source identification problems for the wave equation on graphs, Inverse Problems, 31 (2015), 29pp. doi: 10.1088/0266-5611/31/9/095007.

[16]

S. Avdonin and Y. Zhao, Exact controllability of the 1-D wave equation on finite metric tree graphs, Appl. Math. Optim., (2019). doi: 10.1007/s00245-019-09629-3.

[17]

S. Avdonin and Y. Zhao, Leaf peeling method for the wave equation on metric tree graphs, Inverse Probl. Imaging, 15 (2021), 185-199.  doi: 10.3934/ipi.2020060.

[18]

S. A. AvdoninM. I. Belishev and S. A. Ivanov, Boundary control and an inverse matrix problem for the equation $u_tt-u_xx+V(x)u = 0$, Math. USSR-Sb., 72 (1992), 287-310.  doi: 10.1070/SM1992v072n02ABEH002141.

[19] S. A. Avdonin and S. A. Ivanov, Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems, Cambridge University Press, Cambridge, 1995. 
[20]

S. A. AvdoninV. Mikhaylov and K. B. Nurtazina, On inverse dynamical and spectral problems for the wave and Schrödinger equations on finite trees. The leaf peeling method, J. Math. Sci. (NY), 224 (2017), 1-10.  doi: 10.1007/s10958-017-3388-2.

[21]

G. Bastin, J. M. Coron and B. d'Andrèa Novel, Using hyperbolic systems of balance laws for modeling, control and stability analysis of physical networks, in Proceedings of the Lecture Notes for the Pre-Congress Workshop on Complex Embedded and Networked Control Systems, 17th IFAC World Congress, Seoul, Korea, 2008, 16–20.

[22]

M. I. Belishev, Boundary spectral inverse problem on a class of graphs (trees) by the BC method, Inverse Problems, 20 (2004), 647-672.  doi: 10.1088/0266-5611/20/3/002.

[23]

M. I. Belishev and A. F. Vakulenko, Inverse problems on graphs: Recovering the tree of strings by the BC-method, J. Inverse Ill-Posed Probl., 14 (2006), 29-46.  doi: 10.1515/156939406776237474.

[24]

J. Bell and G. Craciun, A distributed parameter identification problem in neuronal cable theory models, Math. Biosci., 194 (2005), 1-19.  doi: 10.1016/j.mbs.2004.07.001.

[25]

G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs, Mathematical Surveys and Monographs, 186, American Mathematical Society, Providence, RI, 2013. doi: 10.1090/surv/186.

[26]

I. B. BourdonovA. S. Kossatchev and V. V. Kulyamin, Analysis of a graph by a set of automata, Program. Comput. Softw., 41 (2015), 307-310.  doi: 10.1134/S0361768815060031.

[27]

I. B. BourdonovA. S. Kossatchev and V. V. Kulyamin, Parallel computations on a graph, Program. Comput. Softw., 41 (2015), 1-13.  doi: 10.1134/S0361768815010028.

[28]

B. M. Brown and R. Weikard, A Borg-Levinson theorem for trees, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), 3231-3243.  doi: 10.1098/rspa.2005.1513.

[29]

R. M. ColomboG. GuerraM. Herty and V. Schleper, Optimal control in networks of pipes and canals, SIAM J. Control Optim., 48 (2009), 2032-2050.  doi: 10.1137/080716372.

[30]

R. Dáger and E. Zuazua, Wave Propagation, Observation and Control in 1-$d$ Flexible Multi-Structures, Mathematics & Applications, 50, Springer-Verlag, Berlin, 2006. doi: 10.1007/3-540-37726-3.

[31]

P. Exner, Vertex couplings in quantum graphs: Approximations by scaled Schrödinger operators, in Mathematics in Science and Technology, World Sci. Publ., Hackensack, NJ, 2011, 71–92. doi: 10.1142/9789814338820_0004.

[32]

G. Freiling and V. Yurko, Inverse problems for differential operators on trees with general matching conditions, Appl. Anal., 86 (2007), 653-667.  doi: 10.1080/00036810701303976.

[33]

M. Gugat and G. Leugering, Global boundary controllability of the Saint-Venant system for sloped canals with friction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 257-270.  doi: 10.1016/j.anihpc.2008.01.002.

[34]

B. Gutkin and U. Smilansky, Can you hear the shape of a graph?, J. Phys. A., 34 (2001), 6061-6068.  doi: 10.1088/0305-4470/34/31/301.

[35]

Z.-J. Han and G.-Q. Xu, Output feedback stabilization of a tree-shaped network of vibrating strings with non-collocated observation, Internat. J. Control, 84 (2011), 458-475.  doi: 10.1080/00207179.2011.561441.

[36]

S. Hansen and E. Zuazua, Exact controllability and stabilization of a vibrating string with an interior point mass, SIAM J. Control Optim., 33 (1995), 1357-1391.  doi: 10.1137/S0363012993248347.

[37]

N. E. Hurt, Mathematical Physics of Quantum Wires and Devices, Mathematics and its Applications, 506, Kluwer Academic Publishers, Dordrecht, 2000. doi: 10.1007/978-94-015-9626-8.

[38]

C. Joachim and S. Roth, Atomic and Molecular Wires, NATO Science Series E, 341, Springer Netherlands, 1997.

[39]

V. Kostrykin and R. Schrader, Kirchoff's rule for quantum wires, J. Phys. A, 32 (1999), 595-630.  doi: 10.1088/0305-4470/32/4/006.

[40]

V. Kostrykin and R. Schrader, Kirchoff's rule for quantum wires. II. The inverse problem with possible applications to quantum computers, Fortschr. Phys., 48 (2000), 703-716.  doi: 10.1002/1521-3978(200008)48:8<703::AID-PROP703>3.0.CO;2-O.

[41]

T. Kottos and U. Smilansky, Periodic orbit theory and spectral statistics for quantum graphs, Ann. Physics, 274 (1999), 76-124.  doi: 10.1006/aphy.1999.5904.

[42]

T. Kottos and U. Smilansky, Quantum chaos on graphs, Phys. Rev. Lett., 79 (1997), 4794-4797.  doi: 10.1103/PhysRevLett.79.4794.

[43]

P. Kurasov and M. Nowaczyk, Inverse spectral problem for quantum graphs, J. Phys. A., 38 (2005), 4901-4915.  doi: 10.1088/0305-4470/38/22/014.

[44]

J. E. Lagnese, G. Leugering and E. J. P. G. Schmidt, Modeling, Analysis and Control of Dynamical Elastic Multi-Link Structures, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1994. doi: 10.1007/978-1-4612-0273-8.

[45]

Y. B. Melnikov and B. S. Pavlov, Two-body scattering on a graph and application to simple nanoelectronic devices, J. Math. Phys., 36 (1995), 2813-2825.  doi: 10.1063/1.531068.

[46]

N. M. R. Peres, Scattering in one-dimensional heterostructures described by the Dirac equation, J. Phys. Condens. Matter, 21 (2009). doi: 10.1088/0953-8984/21/9/095501.

[47]

N. M. R. Peres, J. N. B. Rodrigues, T. Stauber and J. M. B. Lopes dos Santos, Dirac electrons in graphene-based quantum wires and quantum dots, J. Phys. Condens. Matter, 21 (2009). doi: 10.1088/0953-8984/21/34/344202.

[48]

W. Rall, Core conductor theory and cable properties of neurons, in Handbook of Physiology, The Nervous System, Cellular Biology of Neurons, American Physiological Society, Rockville, MD, 1977, 39–97. doi: 10.1002/cphy.cp010103.

[49]

V. Yurko, Inverse spectral problems for Sturm-Liouville operators on graphs, Inverse Problems, 21 (2005), 1075-1086.  doi: 10.1088/0266-5611/21/3/017.

[50]

E. Zuazua, Control and stabilization of waves on 1-d networks, in Modelling and Optimisation of Flows on Networks, Lecture Notes in Math., 2062, Springer, Heidelberg, 2013,463–493. doi: 10.1007/978-3-642-32160-3_9.

show all references

References:
[1]

S. AdamE. H. HwangV. M. Galitski and S. Das Sarma, A self-consistent theory for graphene transports, Proc. Natl. Acad. Sci. USA, 104 (2007), 18392-18397.  doi: 10.1073/pnas.0704772104.

[2]

F. Al-MusallamS. A. AvdoninN. Avdonina and J. Edward, Control and inverse problems for networks of vibrating strings with attached masses, Nanosystems: Physics, Chemistry, and Mathematics, 7 (2016), 835-841.  doi: 10.17586/2220-8054-2016-7-5-835-841.

[3]

G. AlìA. Bartel and M. Günther, Parabolic differential-algebraic models in electrical network design, Multiscale Model. Simul., 4 (2005), 813-838.  doi: 10.1137/040610696.

[4]

S. Avdonin, Control, observation and identification problems for the wave equation on metric graphs, IFAC-PapersOnLine, 52 (2019), 52-57.  doi: 10.1016/j.ifacol.2019.08.010.

[5]

S. Avdonin, Using hyperbolic systems of balance laws for modeling, control and stability analysis of physical networks, in Analysis on Graphs and Its Applications (Proceedings of Symposia in Pure Mathematics), 77, AMS, Providence, RI, 2008,507–521.

[6]

S. Avdonin, N. Avdonina and J. Edward, Boundary inverse problems for networks of vibrating strings with attached masses, in Dynamic Systems and Applications, 7, Dynamic, Atlanta, GA, 2016, 41–44.

[7]

S. Avdonin and J. Bell, Determining a distributed conductance parameter for a neuronal cable model defined on a tree graph, Inverse Probl. Imaging, 9 (2015), 645-659.  doi: 10.3934/ipi.2015.9.645.

[8]

S. Avdonin and J. Edward, An inverse problem for quantum trees with delta-prime vertex conditions, Vibration, 3 (2020), 448-463.  doi: 10.3390/vibration3040028.

[9]

S. Avdonin and J. Edward, Controllability for a string with attached masses and Riesz bases for asymmetric spaces, Math. Control Relat. Fields, 9 (2019), 453-494.  doi: 10.3934/mcrf.2019021.

[10]

S. Avdonin and J. Edward, Exact controllability for string with attached masses, SIAM J. Control Optim., 56 (2018), 945-980.  doi: 10.1137/15M1029333.

[11]

S. Avdonin and P. Kurasov, Inverse problems for quantum trees, Inverse Probl. Imaging, 2 (2008), 1-21.  doi: 10.3934/ipi.2008.2.1.

[12]

S. AvdoninP. Kurasov and M. Novaczyk, Inverse problems for quantum trees II: Recovering matching conditions for star graphs, Inverse Probl. Imaging, 4 (2010), 579-598.  doi: 10.3934/ipi.2010.4.579.

[13]

S. AvdoninG. Leugering and V. Mikhaylov, On an inverse problem for tree-like networks of elastic strings, ZAMM Z. Angew. Math. Mech., 90 (2010), 136-150.  doi: 10.1002/zamm.200900295.

[14]

S. Avdonin and V. Mikhaylov, The boundary control approach to inverse spectral theory, Inverse Problems, 26 (2010), 19pp. doi: 10.1088/0266-5611/26/4/045009.

[15]

S. Avdonin and S. Nicaise, Source identification problems for the wave equation on graphs, Inverse Problems, 31 (2015), 29pp. doi: 10.1088/0266-5611/31/9/095007.

[16]

S. Avdonin and Y. Zhao, Exact controllability of the 1-D wave equation on finite metric tree graphs, Appl. Math. Optim., (2019). doi: 10.1007/s00245-019-09629-3.

[17]

S. Avdonin and Y. Zhao, Leaf peeling method for the wave equation on metric tree graphs, Inverse Probl. Imaging, 15 (2021), 185-199.  doi: 10.3934/ipi.2020060.

[18]

S. A. AvdoninM. I. Belishev and S. A. Ivanov, Boundary control and an inverse matrix problem for the equation $u_tt-u_xx+V(x)u = 0$, Math. USSR-Sb., 72 (1992), 287-310.  doi: 10.1070/SM1992v072n02ABEH002141.

[19] S. A. Avdonin and S. A. Ivanov, Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems, Cambridge University Press, Cambridge, 1995. 
[20]

S. A. AvdoninV. Mikhaylov and K. B. Nurtazina, On inverse dynamical and spectral problems for the wave and Schrödinger equations on finite trees. The leaf peeling method, J. Math. Sci. (NY), 224 (2017), 1-10.  doi: 10.1007/s10958-017-3388-2.

[21]

G. Bastin, J. M. Coron and B. d'Andrèa Novel, Using hyperbolic systems of balance laws for modeling, control and stability analysis of physical networks, in Proceedings of the Lecture Notes for the Pre-Congress Workshop on Complex Embedded and Networked Control Systems, 17th IFAC World Congress, Seoul, Korea, 2008, 16–20.

[22]

M. I. Belishev, Boundary spectral inverse problem on a class of graphs (trees) by the BC method, Inverse Problems, 20 (2004), 647-672.  doi: 10.1088/0266-5611/20/3/002.

[23]

M. I. Belishev and A. F. Vakulenko, Inverse problems on graphs: Recovering the tree of strings by the BC-method, J. Inverse Ill-Posed Probl., 14 (2006), 29-46.  doi: 10.1515/156939406776237474.

[24]

J. Bell and G. Craciun, A distributed parameter identification problem in neuronal cable theory models, Math. Biosci., 194 (2005), 1-19.  doi: 10.1016/j.mbs.2004.07.001.

[25]

G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs, Mathematical Surveys and Monographs, 186, American Mathematical Society, Providence, RI, 2013. doi: 10.1090/surv/186.

[26]

I. B. BourdonovA. S. Kossatchev and V. V. Kulyamin, Analysis of a graph by a set of automata, Program. Comput. Softw., 41 (2015), 307-310.  doi: 10.1134/S0361768815060031.

[27]

I. B. BourdonovA. S. Kossatchev and V. V. Kulyamin, Parallel computations on a graph, Program. Comput. Softw., 41 (2015), 1-13.  doi: 10.1134/S0361768815010028.

[28]

B. M. Brown and R. Weikard, A Borg-Levinson theorem for trees, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), 3231-3243.  doi: 10.1098/rspa.2005.1513.

[29]

R. M. ColomboG. GuerraM. Herty and V. Schleper, Optimal control in networks of pipes and canals, SIAM J. Control Optim., 48 (2009), 2032-2050.  doi: 10.1137/080716372.

[30]

R. Dáger and E. Zuazua, Wave Propagation, Observation and Control in 1-$d$ Flexible Multi-Structures, Mathematics & Applications, 50, Springer-Verlag, Berlin, 2006. doi: 10.1007/3-540-37726-3.

[31]

P. Exner, Vertex couplings in quantum graphs: Approximations by scaled Schrödinger operators, in Mathematics in Science and Technology, World Sci. Publ., Hackensack, NJ, 2011, 71–92. doi: 10.1142/9789814338820_0004.

[32]

G. Freiling and V. Yurko, Inverse problems for differential operators on trees with general matching conditions, Appl. Anal., 86 (2007), 653-667.  doi: 10.1080/00036810701303976.

[33]

M. Gugat and G. Leugering, Global boundary controllability of the Saint-Venant system for sloped canals with friction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 257-270.  doi: 10.1016/j.anihpc.2008.01.002.

[34]

B. Gutkin and U. Smilansky, Can you hear the shape of a graph?, J. Phys. A., 34 (2001), 6061-6068.  doi: 10.1088/0305-4470/34/31/301.

[35]

Z.-J. Han and G.-Q. Xu, Output feedback stabilization of a tree-shaped network of vibrating strings with non-collocated observation, Internat. J. Control, 84 (2011), 458-475.  doi: 10.1080/00207179.2011.561441.

[36]

S. Hansen and E. Zuazua, Exact controllability and stabilization of a vibrating string with an interior point mass, SIAM J. Control Optim., 33 (1995), 1357-1391.  doi: 10.1137/S0363012993248347.

[37]

N. E. Hurt, Mathematical Physics of Quantum Wires and Devices, Mathematics and its Applications, 506, Kluwer Academic Publishers, Dordrecht, 2000. doi: 10.1007/978-94-015-9626-8.

[38]

C. Joachim and S. Roth, Atomic and Molecular Wires, NATO Science Series E, 341, Springer Netherlands, 1997.

[39]

V. Kostrykin and R. Schrader, Kirchoff's rule for quantum wires, J. Phys. A, 32 (1999), 595-630.  doi: 10.1088/0305-4470/32/4/006.

[40]

V. Kostrykin and R. Schrader, Kirchoff's rule for quantum wires. II. The inverse problem with possible applications to quantum computers, Fortschr. Phys., 48 (2000), 703-716.  doi: 10.1002/1521-3978(200008)48:8<703::AID-PROP703>3.0.CO;2-O.

[41]

T. Kottos and U. Smilansky, Periodic orbit theory and spectral statistics for quantum graphs, Ann. Physics, 274 (1999), 76-124.  doi: 10.1006/aphy.1999.5904.

[42]

T. Kottos and U. Smilansky, Quantum chaos on graphs, Phys. Rev. Lett., 79 (1997), 4794-4797.  doi: 10.1103/PhysRevLett.79.4794.

[43]

P. Kurasov and M. Nowaczyk, Inverse spectral problem for quantum graphs, J. Phys. A., 38 (2005), 4901-4915.  doi: 10.1088/0305-4470/38/22/014.

[44]

J. E. Lagnese, G. Leugering and E. J. P. G. Schmidt, Modeling, Analysis and Control of Dynamical Elastic Multi-Link Structures, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1994. doi: 10.1007/978-1-4612-0273-8.

[45]

Y. B. Melnikov and B. S. Pavlov, Two-body scattering on a graph and application to simple nanoelectronic devices, J. Math. Phys., 36 (1995), 2813-2825.  doi: 10.1063/1.531068.

[46]

N. M. R. Peres, Scattering in one-dimensional heterostructures described by the Dirac equation, J. Phys. Condens. Matter, 21 (2009). doi: 10.1088/0953-8984/21/9/095501.

[47]

N. M. R. Peres, J. N. B. Rodrigues, T. Stauber and J. M. B. Lopes dos Santos, Dirac electrons in graphene-based quantum wires and quantum dots, J. Phys. Condens. Matter, 21 (2009). doi: 10.1088/0953-8984/21/34/344202.

[48]

W. Rall, Core conductor theory and cable properties of neurons, in Handbook of Physiology, The Nervous System, Cellular Biology of Neurons, American Physiological Society, Rockville, MD, 1977, 39–97. doi: 10.1002/cphy.cp010103.

[49]

V. Yurko, Inverse spectral problems for Sturm-Liouville operators on graphs, Inverse Problems, 21 (2005), 1075-1086.  doi: 10.1088/0266-5611/21/3/017.

[50]

E. Zuazua, Control and stabilization of waves on 1-d networks, in Modelling and Optimisation of Flows on Networks, Lecture Notes in Math., 2062, Springer, Heidelberg, 2013,463–493. doi: 10.1007/978-3-642-32160-3_9.

Figure 1.  A metric tree
Figure 2.  Sensors at vertex $ v_1 $ marked by arrows
Figure 3.  $ \Omega $ and subtree $ \Omega_{kj} $
Figure 4.  Star with coordinate system: $ e_j $ identified with $ [0,\ell_j] $
Figure 5.  Star as part of larger tree
Figure 6.  $ \Omega $ and subtree $ \Omega_{12} $
[1]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems and Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[2]

Lauri Oksanen. Solving an inverse problem for the wave equation by using a minimization algorithm and time-reversed measurements. Inverse Problems and Imaging, 2011, 5 (3) : 731-744. doi: 10.3934/ipi.2011.5.731

[3]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks and Heterogeneous Media, 2021, 16 (2) : 155-185. doi: 10.3934/nhm.2021003

[4]

Xiaoli Feng, Meixia Zhao, Peijun Li, Xu Wang. An inverse source problem for the stochastic wave equation. Inverse Problems and Imaging, 2022, 16 (2) : 397-415. doi: 10.3934/ipi.2021055

[5]

Sergei Avdonin, Julian Edward. Controllability for a string with attached masses and Riesz bases for asymmetric spaces. Mathematical Control and Related Fields, 2019, 9 (3) : 453-494. doi: 10.3934/mcrf.2019021

[6]

Enzo Vitillaro. Blow–up for the wave equation with hyperbolic dynamical boundary conditions, interior and boundary nonlinear damping and sources. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4575-4608. doi: 10.3934/dcdss.2021130

[7]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems and Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[8]

Yaru Xie, Genqi Xu. Exponential stability of 1-d wave equation with the boundary time delay based on the interior control. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 557-579. doi: 10.3934/dcdss.2017028

[9]

Yanni Guo, Genqi Xu, Yansha Guo. Stabilization of the wave equation with interior input delay and mixed Neumann-Dirichlet boundary. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2491-2507. doi: 10.3934/dcdsb.2016057

[10]

Huafei Di, Yadong Shang, Jiali Yu. Existence and uniform decay estimates for the fourth order wave equation with nonlinear boundary damping and interior source. Electronic Research Archive, 2020, 28 (1) : 221-261. doi: 10.3934/era.2020015

[11]

Laurent Bourgeois, Dmitry Ponomarev, Jérémi Dardé. An inverse obstacle problem for the wave equation in a finite time domain. Inverse Problems and Imaging, 2019, 13 (2) : 377-400. doi: 10.3934/ipi.2019019

[12]

Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control and Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307

[13]

Lorena Bociu, Petronela Radu. Existence of weak solutions to the Cauchy problem of a semilinear wave equation with supercritical interior source and damping. Conference Publications, 2009, 2009 (Special) : 60-71. doi: 10.3934/proc.2009.2009.60

[14]

Chuan-Fu Yang, Natalia Pavlovna Bondarenko. A partial inverse problem for the Sturm-Liouville operator on the lasso-graph. Inverse Problems and Imaging, 2019, 13 (1) : 69-79. doi: 10.3934/ipi.2019004

[15]

Liping Wang, Juncheng Wei. Solutions with interior bubble and boundary layer for an elliptic problem. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 333-351. doi: 10.3934/dcds.2008.21.333

[16]

Brian Sleeman. The inverse acoustic obstacle scattering problem and its interior dual. Inverse Problems and Imaging, 2009, 3 (2) : 211-229. doi: 10.3934/ipi.2009.3.211

[17]

Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations and Control Theory, 2022, 11 (3) : 635-648. doi: 10.3934/eect.2021019

[18]

Tony Liimatainen, Lauri Oksanen. Counterexamples to inverse problems for the wave equation. Inverse Problems and Imaging, 2022, 16 (2) : 467-479. doi: 10.3934/ipi.2021058

[19]

Barbara Kaltenbacher, William Rundell. On the identification of the nonlinearity parameter in the Westervelt equation from boundary measurements. Inverse Problems and Imaging, 2021, 15 (5) : 865-891. doi: 10.3934/ipi.2021020

[20]

Jussi Korpela, Matti Lassas, Lauri Oksanen. Discrete regularization and convergence of the inverse problem for 1+1 dimensional wave equation. Inverse Problems and Imaging, 2019, 13 (3) : 575-596. doi: 10.3934/ipi.2019027

2021 Impact Factor: 1.41

Metrics

  • PDF downloads (200)
  • HTML views (227)
  • Cited by (0)

Other articles
by authors

[Back to Top]