We study transport processes on infinite metric graphs with non-constant velocities and matrix boundary conditions in the $ {\mathrm{L}}^{\infty} $-setting. We apply the theory of bi-continuous operator semigroups to obtain well-posedness of the problem under different assumptions on the velocities and for general stochastic matrices appearing in the boundary conditions.
Citation: |
[1] |
A. Albanese and F. Kühnemund, Trotter-Kato approximation theorems for locally equicontinuous semigroups, Riv. Mat. Univ. Parma (7), 1 (2002), 19-53.
![]() ![]() |
[2] |
A. A. Albanese, L. Lorenzi and V. Manco, Mean ergodic theorems for bi-continuous semigroups, Semigroup Forum, 82 (2011), 141-171.
doi: 10.1007/s00233-010-9260-z.![]() ![]() ![]() |
[3] |
A. A. Albanese and E. Mangino, Trotter-Kato theorems for bi-continuous semigroups and applications to Feller semigroups, Journal of Mathematical Analysis and Applications, 289 (2004), 477-492.
doi: 10.1016/j.jmaa.2003.08.032.![]() ![]() ![]() |
[4] |
W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander and U. Schlotterbeck, One-Parameter Semigroups of Positive Operators, vol. 1184 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1986.
doi: 10.1007/BFb0074922.![]() ![]() ![]() |
[5] |
J. Banasiak and A. Falkiewicz, Some transport and diffusion processes on networks and their graph realizability, Appl. Math. Lett., 45 (2015), 25-30.
doi: 10.1016/j.aml.2015.01.006.![]() ![]() ![]() |
[6] |
J. Banasiak and A. Falkiewicz, A singular limit for an age structured mutation problem, Math. Biosci. Eng., 14 (2017), 17-30.
doi: 10.3934/mbe.2017002.![]() ![]() ![]() |
[7] |
J. Banasiak and P. Namayanja, Asymptotic behaviour of flows on reducible networks, Netw. Heterog. Media, 9 (2014), 197-216.
doi: 10.3934/nhm.2014.9.197.![]() ![]() ![]() |
[8] |
J. Banasiak and A. Puchalska, Generalized network transport and Euler-Hille formula, Discrete Contin. Dyn. Syst., Ser. B, 23 (2018), 1873-1893.
doi: 10.3934/dcdsb.2018185.![]() ![]() ![]() |
[9] |
A. Bátkai, M. Kramar Fijavž and A. Rhandi, Positive Operator Semigroups: From Finite to Infinite Dimensions, Operator Theory: Advances and Applications, Springer International Publishing, 257, 2017.
doi: 10.1007/978-3-319-42813-0.![]() ![]() ![]() |
[10] |
F. Bayazit, B. Dorn and M. K. Fijavž, Asymptotic periodicity of flows in time-depending networks, Netw. Heterog. Media, 8 (2013), 843-855.
doi: 10.3934/nhm.2013.8.843.![]() ![]() ![]() |
[11] |
C. Budde and B. Farkas, Intermediate and extrapolated spaces for bi-continuous operator semigroups, J. Evol. Equ., 19 (2019), 321-359.
doi: 10.1007/s00028-018-0477-8.![]() ![]() ![]() |
[12] |
J. Diestel and J. J. Uhl Jr., Vector Measures, Mathematical surveys and monographs, American Mathematical Society, 1977.
doi: 10.1090/surv/015.![]() ![]() ![]() |
[13] |
R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989), 511-547.
doi: 10.1007/BF01393835.![]() ![]() ![]() |
[14] |
A. Dobrick, On the asymptotic behaviour of semigroups for flows in infinite networks, preprint. arXiv: 2011.07014.
![]() |
[15] |
B. Dorn, M. K. Fijavž, R. Nagel and A. Radl, The semigroup approach to transport processes in networks, Physica D: Nonlinear Phenomena, 239 (2010), 1416-1421.
doi: 10.1016/j.physd.2009.06.012.![]() ![]() ![]() |
[16] |
B. Dorn, Semigroups for flows in infinite networks, Semigroup Forum, 76 (2008), 341-356.
doi: 10.1007/s00233-007-9036-2.![]() ![]() ![]() |
[17] |
B. Dorn, V. Keicher and E. Sikolya, Asymptotic periodicity of recurrent flows in infinite networks, Math. Z., 263 (2009), 69-87.
doi: 10.1007/s00209-008-0410-x.![]() ![]() ![]() |
[18] |
K.-J. Engel, M. K. Fijavž, R. Nagel and E. Sikolya, Vertex control of flows in networks, Networks & Heterogeneous Media, 3 (2008), 709-722.
doi: 10.3934/nhm.2008.3.709.![]() ![]() ![]() |
[19] |
K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, vol. 194 of Graduate Texts in Mathematics, Springer-Verlag, New York, 2000.
doi: 10.1007/b97696.![]() ![]() ![]() |
[20] |
B. Farkas, Perturbations of Bi-Continuous Semigroups, PhD thesis, Eötvös Loránd University, 2003.
![]() |
[21] |
B. Farkas, Perturbations of bi-continuous semigroups, Studia Math., 161 (2004), 147-161.
doi: 10.4064/sm161-2-3.![]() ![]() ![]() |
[22] |
B. Farkas, Perturbations of bi-continuous semigroups with applications to transition semigroups on $C_b(H)$, Semigroup Forum, 68 (2004), 87-107.
doi: 10.1007/s00233-002-0024-2.![]() ![]() ![]() |
[23] |
B. Farkas, Adjoint bi-continuous semigroups and semigroups on the space of measures, Czechoslovak Mathematical Journal, 61 (2011), 309-322.
doi: 10.1007/s10587-011-0076-0.![]() ![]() ![]() |
[24] |
M. Kramar and E. Sikolya, Spectral properties and asymptotic periodicity of flows in networks, Mathematische Zeitschrift, 249 (2005), 139-162.
doi: 10.1007/s00209-004-0695-3.![]() ![]() ![]() |
[25] |
F. Kühnemund, Bi-Continuous Semigroups on Spaces with Two Topologies: Theory and Applications, PhD thesis, Eberhard-Karls-Universität Tübingen, 2001.
![]() |
[26] |
F. Kühnemund, A Hille-Yosida theorem for bi-continuous semigroups, Semigroup Forum, 67 (2003), 205-225.
doi: 10.1007/s00233-002-5000-3.![]() ![]() ![]() |
[27] |
H. P. Lotz, Uniform convergence of operators on $L^\infty$ and similar spaces, Math. Z., 190 (1985), 207-220.
doi: 10.1007/BF01160459.![]() ![]() ![]() |
[28] |
T. Mátrai and E. Sikolya, Asymptotic behavior of flows in networks, Forum Math., 19 (2007), 429-461.
doi: 10.1515/FORUM.2007.018.![]() ![]() ![]() |
[29] |
A. K. Scirrat, Evolution Semigroups for Well-Posed, NonAutonomous Evolution Families, PhD thesis, Louisiana State University and Agricultural and Mechanical College, 2016.
![]() |
[30] |
W. van Zuijlen, Integration of Functions with Values in a Riesz Space, Master's thesis, Radboud Universiteit Nijmegen, 2012.
![]() |
[31] |
J. von Below and J. A. Lubary, The eigenvalues of the Laplacian on locally finite networks, Results Math., 47 (2005), 199-225.
doi: 10.1007/BF03323026.![]() ![]() ![]() |
[32] |
J. von Below and J. A. Lubary, The eigenvalues of the Laplacian on locally finite networks under generalized node transition, Results Math., 54 (2009), 15-39.
doi: 10.1007/s00025-009-0376-y.![]() ![]() ![]() |