December  2021, 16(4): 553-567. doi: 10.3934/nhm.2021017

Bi-Continuous semigroups for flows on infinite networks

1. 

North-West University, School of Mathematical and Statistical Sciences, Private Bag X6001-209, Potchefstroom 2520, South Africa

2. 

University of Ljubljana, Faculty of Civil and Geodetic Engineering, Jamova 2, SI-1000 Ljubljana, Slovenia, Institute of Mathematics, Physics and Mechanics, Jadranska 19, SI-1000 Ljubljana, Slovenia

* Corresponding author: marjeta.kramar@fgg.uni-lj.si

Received  December 2020 Revised  May 2021 Published  December 2021 Early access  July 2021

Fund Project: The authors are grateful to University of Wuppertal for the possibility of funding the stay of the first author at the University of Ljubljana within the Erasmus exchange program. The first author was supported by the DAAD-TKA Project 308019 "Coupled systems and innovative time integrators" and the second author by the Slovenian Research Agency, Grant No. P1-0222

We study transport processes on infinite metric graphs with non-constant velocities and matrix boundary conditions in the $ {\mathrm{L}}^{\infty} $-setting. We apply the theory of bi-continuous operator semigroups to obtain well-posedness of the problem under different assumptions on the velocities and for general stochastic matrices appearing in the boundary conditions.

Citation: Christian Budde, Marjeta Kramar Fijavž. Bi-Continuous semigroups for flows on infinite networks. Networks & Heterogeneous Media, 2021, 16 (4) : 553-567. doi: 10.3934/nhm.2021017
References:
[1]

A. Albanese and F. Kühnemund, Trotter-Kato approximation theorems for locally equicontinuous semigroups, Riv. Mat. Univ. Parma (7), 1 (2002), 19-53.   Google Scholar

[2]

A. A. AlbaneseL. Lorenzi and V. Manco, Mean ergodic theorems for bi-continuous semigroups, Semigroup Forum, 82 (2011), 141-171.  doi: 10.1007/s00233-010-9260-z.  Google Scholar

[3]

A. A. Albanese and E. Mangino, Trotter-Kato theorems for bi-continuous semigroups and applications to Feller semigroups, Journal of Mathematical Analysis and Applications, 289 (2004), 477-492.  doi: 10.1016/j.jmaa.2003.08.032.  Google Scholar

[4]

W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander and U. Schlotterbeck, One-Parameter Semigroups of Positive Operators, vol. 1184 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1986. doi: 10.1007/BFb0074922.  Google Scholar

[5]

J. Banasiak and A. Falkiewicz, Some transport and diffusion processes on networks and their graph realizability, Appl. Math. Lett., 45 (2015), 25-30.  doi: 10.1016/j.aml.2015.01.006.  Google Scholar

[6]

J. Banasiak and A. Falkiewicz, A singular limit for an age structured mutation problem, Math. Biosci. Eng., 14 (2017), 17-30.  doi: 10.3934/mbe.2017002.  Google Scholar

[7]

J. Banasiak and P. Namayanja, Asymptotic behaviour of flows on reducible networks, Netw. Heterog. Media, 9 (2014), 197-216.  doi: 10.3934/nhm.2014.9.197.  Google Scholar

[8]

J. Banasiak and A. Puchalska, Generalized network transport and Euler-Hille formula, Discrete Contin. Dyn. Syst., Ser. B, 23 (2018), 1873-1893.  doi: 10.3934/dcdsb.2018185.  Google Scholar

[9]

A. Bátkai, M. Kramar Fijavž and A. Rhandi, Positive Operator Semigroups: From Finite to Infinite Dimensions, Operator Theory: Advances and Applications, Springer International Publishing, 257, 2017. doi: 10.1007/978-3-319-42813-0.  Google Scholar

[10]

F. BayazitB. Dorn and M. K. Fijavž, Asymptotic periodicity of flows in time-depending networks, Netw. Heterog. Media, 8 (2013), 843-855.  doi: 10.3934/nhm.2013.8.843.  Google Scholar

[11]

C. Budde and B. Farkas, Intermediate and extrapolated spaces for bi-continuous operator semigroups, J. Evol. Equ., 19 (2019), 321-359.  doi: 10.1007/s00028-018-0477-8.  Google Scholar

[12]

J. Diestel and J. J. Uhl Jr., Vector Measures, Mathematical surveys and monographs, American Mathematical Society, 1977. doi: 10.1090/surv/015.  Google Scholar

[13]

R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989), 511-547.  doi: 10.1007/BF01393835.  Google Scholar

[14]

A. Dobrick, On the asymptotic behaviour of semigroups for flows in infinite networks, preprint. arXiv: 2011.07014. Google Scholar

[15]

B. DornM. K. FijavžR. Nagel and A. Radl, The semigroup approach to transport processes in networks, Physica D: Nonlinear Phenomena, 239 (2010), 1416-1421.  doi: 10.1016/j.physd.2009.06.012.  Google Scholar

[16]

B. Dorn, Semigroups for flows in infinite networks, Semigroup Forum, 76 (2008), 341-356.  doi: 10.1007/s00233-007-9036-2.  Google Scholar

[17]

B. DornV. Keicher and E. Sikolya, Asymptotic periodicity of recurrent flows in infinite networks, Math. Z., 263 (2009), 69-87.  doi: 10.1007/s00209-008-0410-x.  Google Scholar

[18]

K.-J. EngelM. K. FijavžR. Nagel and E. Sikolya, Vertex control of flows in networks, Networks & Heterogeneous Media, 3 (2008), 709-722.  doi: 10.3934/nhm.2008.3.709.  Google Scholar

[19]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, vol. 194 of Graduate Texts in Mathematics, Springer-Verlag, New York, 2000. doi: 10.1007/b97696.  Google Scholar

[20]

B. Farkas, Perturbations of Bi-Continuous Semigroups, PhD thesis, Eötvös Loránd University, 2003. Google Scholar

[21]

B. Farkas, Perturbations of bi-continuous semigroups, Studia Math., 161 (2004), 147-161.  doi: 10.4064/sm161-2-3.  Google Scholar

[22]

B. Farkas, Perturbations of bi-continuous semigroups with applications to transition semigroups on $C_b(H)$, Semigroup Forum, 68 (2004), 87-107.  doi: 10.1007/s00233-002-0024-2.  Google Scholar

[23]

B. Farkas, Adjoint bi-continuous semigroups and semigroups on the space of measures, Czechoslovak Mathematical Journal, 61 (2011), 309-322.  doi: 10.1007/s10587-011-0076-0.  Google Scholar

[24]

M. Kramar and E. Sikolya, Spectral properties and asymptotic periodicity of flows in networks, Mathematische Zeitschrift, 249 (2005), 139-162.  doi: 10.1007/s00209-004-0695-3.  Google Scholar

[25]

F. Kühnemund, Bi-Continuous Semigroups on Spaces with Two Topologies: Theory and Applications, PhD thesis, Eberhard-Karls-Universität Tübingen, 2001. Google Scholar

[26]

F. Kühnemund, A Hille-Yosida theorem for bi-continuous semigroups, Semigroup Forum, 67 (2003), 205-225.  doi: 10.1007/s00233-002-5000-3.  Google Scholar

[27]

H. P. Lotz, Uniform convergence of operators on $L^\infty$ and similar spaces, Math. Z., 190 (1985), 207-220.  doi: 10.1007/BF01160459.  Google Scholar

[28]

T. Mátrai and E. Sikolya, Asymptotic behavior of flows in networks, Forum Math., 19 (2007), 429-461.  doi: 10.1515/FORUM.2007.018.  Google Scholar

[29]

A. K. Scirrat, Evolution Semigroups for Well-Posed, NonAutonomous Evolution Families, PhD thesis, Louisiana State University and Agricultural and Mechanical College, 2016. Google Scholar

[30]

W. van Zuijlen, Integration of Functions with Values in a Riesz Space, Master's thesis, Radboud Universiteit Nijmegen, 2012. Google Scholar

[31]

J. von Below and J. A. Lubary, The eigenvalues of the Laplacian on locally finite networks, Results Math., 47 (2005), 199-225.  doi: 10.1007/BF03323026.  Google Scholar

[32]

J. von Below and J. A. Lubary, The eigenvalues of the Laplacian on locally finite networks under generalized node transition, Results Math., 54 (2009), 15-39.  doi: 10.1007/s00025-009-0376-y.  Google Scholar

show all references

References:
[1]

A. Albanese and F. Kühnemund, Trotter-Kato approximation theorems for locally equicontinuous semigroups, Riv. Mat. Univ. Parma (7), 1 (2002), 19-53.   Google Scholar

[2]

A. A. AlbaneseL. Lorenzi and V. Manco, Mean ergodic theorems for bi-continuous semigroups, Semigroup Forum, 82 (2011), 141-171.  doi: 10.1007/s00233-010-9260-z.  Google Scholar

[3]

A. A. Albanese and E. Mangino, Trotter-Kato theorems for bi-continuous semigroups and applications to Feller semigroups, Journal of Mathematical Analysis and Applications, 289 (2004), 477-492.  doi: 10.1016/j.jmaa.2003.08.032.  Google Scholar

[4]

W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander and U. Schlotterbeck, One-Parameter Semigroups of Positive Operators, vol. 1184 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1986. doi: 10.1007/BFb0074922.  Google Scholar

[5]

J. Banasiak and A. Falkiewicz, Some transport and diffusion processes on networks and their graph realizability, Appl. Math. Lett., 45 (2015), 25-30.  doi: 10.1016/j.aml.2015.01.006.  Google Scholar

[6]

J. Banasiak and A. Falkiewicz, A singular limit for an age structured mutation problem, Math. Biosci. Eng., 14 (2017), 17-30.  doi: 10.3934/mbe.2017002.  Google Scholar

[7]

J. Banasiak and P. Namayanja, Asymptotic behaviour of flows on reducible networks, Netw. Heterog. Media, 9 (2014), 197-216.  doi: 10.3934/nhm.2014.9.197.  Google Scholar

[8]

J. Banasiak and A. Puchalska, Generalized network transport and Euler-Hille formula, Discrete Contin. Dyn. Syst., Ser. B, 23 (2018), 1873-1893.  doi: 10.3934/dcdsb.2018185.  Google Scholar

[9]

A. Bátkai, M. Kramar Fijavž and A. Rhandi, Positive Operator Semigroups: From Finite to Infinite Dimensions, Operator Theory: Advances and Applications, Springer International Publishing, 257, 2017. doi: 10.1007/978-3-319-42813-0.  Google Scholar

[10]

F. BayazitB. Dorn and M. K. Fijavž, Asymptotic periodicity of flows in time-depending networks, Netw. Heterog. Media, 8 (2013), 843-855.  doi: 10.3934/nhm.2013.8.843.  Google Scholar

[11]

C. Budde and B. Farkas, Intermediate and extrapolated spaces for bi-continuous operator semigroups, J. Evol. Equ., 19 (2019), 321-359.  doi: 10.1007/s00028-018-0477-8.  Google Scholar

[12]

J. Diestel and J. J. Uhl Jr., Vector Measures, Mathematical surveys and monographs, American Mathematical Society, 1977. doi: 10.1090/surv/015.  Google Scholar

[13]

R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989), 511-547.  doi: 10.1007/BF01393835.  Google Scholar

[14]

A. Dobrick, On the asymptotic behaviour of semigroups for flows in infinite networks, preprint. arXiv: 2011.07014. Google Scholar

[15]

B. DornM. K. FijavžR. Nagel and A. Radl, The semigroup approach to transport processes in networks, Physica D: Nonlinear Phenomena, 239 (2010), 1416-1421.  doi: 10.1016/j.physd.2009.06.012.  Google Scholar

[16]

B. Dorn, Semigroups for flows in infinite networks, Semigroup Forum, 76 (2008), 341-356.  doi: 10.1007/s00233-007-9036-2.  Google Scholar

[17]

B. DornV. Keicher and E. Sikolya, Asymptotic periodicity of recurrent flows in infinite networks, Math. Z., 263 (2009), 69-87.  doi: 10.1007/s00209-008-0410-x.  Google Scholar

[18]

K.-J. EngelM. K. FijavžR. Nagel and E. Sikolya, Vertex control of flows in networks, Networks & Heterogeneous Media, 3 (2008), 709-722.  doi: 10.3934/nhm.2008.3.709.  Google Scholar

[19]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, vol. 194 of Graduate Texts in Mathematics, Springer-Verlag, New York, 2000. doi: 10.1007/b97696.  Google Scholar

[20]

B. Farkas, Perturbations of Bi-Continuous Semigroups, PhD thesis, Eötvös Loránd University, 2003. Google Scholar

[21]

B. Farkas, Perturbations of bi-continuous semigroups, Studia Math., 161 (2004), 147-161.  doi: 10.4064/sm161-2-3.  Google Scholar

[22]

B. Farkas, Perturbations of bi-continuous semigroups with applications to transition semigroups on $C_b(H)$, Semigroup Forum, 68 (2004), 87-107.  doi: 10.1007/s00233-002-0024-2.  Google Scholar

[23]

B. Farkas, Adjoint bi-continuous semigroups and semigroups on the space of measures, Czechoslovak Mathematical Journal, 61 (2011), 309-322.  doi: 10.1007/s10587-011-0076-0.  Google Scholar

[24]

M. Kramar and E. Sikolya, Spectral properties and asymptotic periodicity of flows in networks, Mathematische Zeitschrift, 249 (2005), 139-162.  doi: 10.1007/s00209-004-0695-3.  Google Scholar

[25]

F. Kühnemund, Bi-Continuous Semigroups on Spaces with Two Topologies: Theory and Applications, PhD thesis, Eberhard-Karls-Universität Tübingen, 2001. Google Scholar

[26]

F. Kühnemund, A Hille-Yosida theorem for bi-continuous semigroups, Semigroup Forum, 67 (2003), 205-225.  doi: 10.1007/s00233-002-5000-3.  Google Scholar

[27]

H. P. Lotz, Uniform convergence of operators on $L^\infty$ and similar spaces, Math. Z., 190 (1985), 207-220.  doi: 10.1007/BF01160459.  Google Scholar

[28]

T. Mátrai and E. Sikolya, Asymptotic behavior of flows in networks, Forum Math., 19 (2007), 429-461.  doi: 10.1515/FORUM.2007.018.  Google Scholar

[29]

A. K. Scirrat, Evolution Semigroups for Well-Posed, NonAutonomous Evolution Families, PhD thesis, Louisiana State University and Agricultural and Mechanical College, 2016. Google Scholar

[30]

W. van Zuijlen, Integration of Functions with Values in a Riesz Space, Master's thesis, Radboud Universiteit Nijmegen, 2012. Google Scholar

[31]

J. von Below and J. A. Lubary, The eigenvalues of the Laplacian on locally finite networks, Results Math., 47 (2005), 199-225.  doi: 10.1007/BF03323026.  Google Scholar

[32]

J. von Below and J. A. Lubary, The eigenvalues of the Laplacian on locally finite networks under generalized node transition, Results Math., 54 (2009), 15-39.  doi: 10.1007/s00025-009-0376-y.  Google Scholar

[1]

Lu Zhang, Aihong Zou, Tao Yan, Ji Shu. Weak pullback attractors for stochastic Ginzburg-Landau equations in Bochner spaces. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021063

[2]

Alexander Pankov. Nonlinear Schrödinger Equations on Periodic Metric Graphs. Discrete & Continuous Dynamical Systems, 2018, 38 (2) : 697-714. doi: 10.3934/dcds.2018030

[3]

Rinaldo M. Colombo, Graziano Guerra. Differential equations in metric spaces with applications. Discrete & Continuous Dynamical Systems, 2009, 23 (3) : 733-753. doi: 10.3934/dcds.2009.23.733

[4]

O. A. Veliev. On the spectrality and spectral expansion of the non-self-adjoint mathieu-hill operator in $ L_{2}(-\infty, \infty) $. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1537-1562. doi: 10.3934/cpaa.2020077

[5]

Khalid Latrach, Hssaine Oummi, Ahmed Zeghal. Existence results for nonlinear mono-energetic singular transport equations: $ L^p $-spaces. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021028

[6]

Koya Nishimura. Global existence for the Boltzmann equation in $ L^r_v L^\infty_t L^\infty_x $ spaces. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1769-1782. doi: 10.3934/cpaa.2019083

[7]

Simona Fornaro, Abdelaziz Rhandi. On the Ornstein Uhlenbeck operator perturbed by singular potentials in $L^p$--spaces. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 5049-5058. doi: 10.3934/dcds.2013.33.5049

[8]

Giuseppe Savaré. Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in $RCD (K, \infty)$ metric measure spaces. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1641-1661. doi: 10.3934/dcds.2014.34.1641

[9]

Leandro M. Del Pezzo, Nicolás Frevenza, Julio D. Rossi. Convex and quasiconvex functions in metric graphs. Networks & Heterogeneous Media, 2021, 16 (4) : 591-607. doi: 10.3934/nhm.2021019

[10]

Frédéric Robert. On the influence of the kernel of the bi-harmonic operator on fourth order equations with exponential growth. Conference Publications, 2007, 2007 (Special) : 875-882. doi: 10.3934/proc.2007.2007.875

[11]

Jeremy LeCrone, Gieri Simonett. Continuous maximal regularity and analytic semigroups. Conference Publications, 2011, 2011 (Special) : 963-970. doi: 10.3934/proc.2011.2011.963

[12]

Samir EL Mourchid. On a hypercylicity criterion for strongly continuous semigroups. Discrete & Continuous Dynamical Systems, 2005, 13 (2) : 271-275. doi: 10.3934/dcds.2005.13.271

[13]

Der-Chen Chang, Jie Xiao. $L^q$-Extensions of $L^p$-spaces by fractional diffusion equations. Discrete & Continuous Dynamical Systems, 2015, 35 (5) : 1905-1920. doi: 10.3934/dcds.2015.35.1905

[14]

Joachim von Below, José A. Lubary. Stability implies constancy for fully autonomous reaction-diffusion-equations on finite metric graphs. Networks & Heterogeneous Media, 2018, 13 (4) : 691-717. doi: 10.3934/nhm.2018031

[15]

T. Hillen. On the $L^2$-moment closure of transport equations: The general case. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 299-318. doi: 10.3934/dcdsb.2005.5.299

[16]

Daniel Han-Kwan. $L^1$ averaging lemma for transport equations with Lipschitz force fields. Kinetic & Related Models, 2010, 3 (4) : 669-683. doi: 10.3934/krm.2010.3.669

[17]

T. Hillen. On the $L^2$-moment closure of transport equations: The Cattaneo approximation. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 961-982. doi: 10.3934/dcdsb.2004.4.961

[18]

Roberto Alicandro, Andrea Braides, Marco Cicalese. $L^\infty$ jenergies on discontinuous functions. Discrete & Continuous Dynamical Systems, 2005, 12 (5) : 905-928. doi: 10.3934/dcds.2005.12.905

[19]

Vincenzo Recupero. Hysteresis operators in metric spaces. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 773-792. doi: 10.3934/dcdss.2015.8.773

[20]

Simona Fornaro, Maria Sosio, Vincenzo Vespri. $L^r_{ loc}-L^\infty_{ loc}$ estimates and expansion of positivity for a class of doubly non linear singular parabolic equations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 737-760. doi: 10.3934/dcdss.2014.7.737

2020 Impact Factor: 1.213

Metrics

  • PDF downloads (80)
  • HTML views (171)
  • Cited by (0)

Other articles
by authors

[Back to Top]