We study convex and quasiconvex functions on a metric graph. Given a set of points in the metric graph, we consider the largest convex function below the prescribed datum. We characterize this largest convex function as the unique largest viscosity subsolution to a simple differential equation, $ u'' = 0 $ on the edges, plus nonlinear transmission conditions at the vertices. We also study the analogous problem for quasiconvex functions and obtain a characterization of the largest quasiconvex function that is below a given datum.
Citation: |
[1] |
B. Abbasi and A. M. Oberman, A partial differential equation for the $ \epsilon $-uniformly quasiconvex envelope, IMA J. Numer. Anal., 39 (2019), 141-166.
doi: 10.1093/imanum/drx068.![]() ![]() ![]() |
[2] |
B. Abbasi and A. M. Oberman, Computing the level set convex hull, J. Sci. Comput., 75 (2018), 26-42.
doi: 10.1007/s10915-017-0522-8.![]() ![]() ![]() |
[3] |
E. N. Barron, R. Goebel and R. R. Jensen, Functions which are quasiconvex under linear perturbations, SIAM J. Optim., 22 (2012), 1089-1108.
doi: 10.1137/110843496.![]() ![]() ![]() |
[4] |
E. N. Barron, R. Goebel and R. R. Jensen, Quasiconvex functions and nonlinear PDEs, Trans. Amer. Math. Soc., 365 (2013), 4229-4255.
doi: 10.1090/S0002-9947-2013-05760-1.![]() ![]() ![]() |
[5] |
E. N. Barron, R. Goebel and R. R. Jensen, The quasiconvex envelope through first-order partial differential equations which characterize quasiconvexity of nonsmooth functions, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 1693-1706.
doi: 10.3934/dcdsb.2012.17.1693.![]() ![]() ![]() |
[6] |
G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs, Mathematical Surveys and Monographs, 186, American Mathematical Society, Providence, RI, 2013.
doi: 10.1090/surv/186.![]() ![]() ![]() |
[7] |
P. Blanc and J. D. Rossi, Games for eigenvalues of the Hessian and concave/convex envelopes, J. Math. Pures Appl., 127 (2019), 192-215.
doi: 10.1016/j.matpur.2018.08.007.![]() ![]() ![]() |
[8] |
J. Cáceres, A. Márquez and M. L. Puertas, Steiner distance and convexity in graphs, European J. Combin., 29 (2008), 726-736.
doi: 10.1016/j.ejc.2007.03.007.![]() ![]() ![]() |
[9] |
L. M. Del Pezzo, N. Frevenza and J. D. Rossi, Convex envelopes on trees, J. Convex Anal., 27 (2020), 1195-1218.
![]() ![]() |
[10] |
F. Di Guglielmo, Nonconvex duality in multiobjective optimization, Math. Oper. Res., 2 (1977), 285-291.
doi: 10.1287/moor.2.3.285.![]() ![]() ![]() |
[11] |
A. Eberhard and C. E. M. Pearce, Class-inclusion properties for convex functions, in Progress in Optimization ({P}erth, 1998), Appl. Optim., 39, Kluwer Acad. Publ., Dordrecht, 2000,129-133.
doi: 10.1007/978-1-4613-0301-5_9.![]() ![]() ![]() |
[12] |
A. Elmoataz and P. Buyssens, On the connection between tug-of-war games and nonlocal PDEs on graphs, C. R. Mécanique, 345 (2017), 177-183.
doi: 10.1016/j.crme.2016.12.001.![]() ![]() |
[13] |
M. Farber and R. E. Jamison, Convexity in graphs and hypergraphs, SIAM J. Algebraic Discrete Methods, 7 (1986), 433-444.
doi: 10.1137/0607049.![]() ![]() ![]() |
[14] |
M. Farber and R. E. Jamison, On local convexity in graphs, Discrete Math., 66 (1987), 231-247.
doi: 10.1016/0012-365X(87)90099-9.![]() ![]() ![]() |
[15] |
H. Komiya, Elementary proof for Sion's minimax theorem, Kodai Math. J., 11 (1988), 5-7.
doi: 10.2996/kmj/1138038812.![]() ![]() ![]() |
[16] |
J. J. Manfredi, A. M. Oberman and A. P. Sviridov, Nonlinear elliptic partial differential equations and $p-$harmonic functions on graphs, Differential Integral Equations, 28 (2015), 79-102.
![]() ![]() |
[17] |
K. Murota, Discrete convex analysis, Math. Programming, 83 (1998), 313-371.
doi: 10.1007/BF02680565.![]() ![]() ![]() |
[18] |
K. Murota, Discrete Convex Analysis, SIAM Monographs on Discrete Mathematics and Applications, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2003.
doi: 10.1137/1.9780898718508.![]() ![]() ![]() |
[19] |
K. Murota, Recent developments in discrete convex analysis, in Research Trends in Combinatorial Optimization, Springer, Berlin, 2009,219-260.
doi: 10.1007/978-3-540-76796-1_11.![]() ![]() ![]() |
[20] |
C. P. Niculescu and L.-E. Persson, Convex Functions and Their Applications, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 23, Springer, New York, 2006.,
doi: 10.1007/0-387-31077-0.![]() ![]() ![]() |
[21] |
A. M. Oberman, The convex envelope is the solution of a nonlinear obstacle problem, Proc. Amer. Math. Soc., 135 (2007), 1689-1694.
doi: 10.1090/S0002-9939-07-08887-9.![]() ![]() ![]() |
[22] |
A. M. Oberman and L. Silvestre, The Dirichlet problem for the convex envelope, Trans. Amer. Math. Soc., 363 (2011), 5871-5886.
doi: 10.1090/S0002-9947-2011-05240-2.![]() ![]() ![]() |
[23] |
C. E. M. Pearce, Quasiconvexity, fractional programming and extremal traffic congestion, in Frontiers in Global Optimization, Nonconvex Optim. Appl., 74, Kluwer Acad. Publ., Boston, MA, 2004,403-409.
doi: 10.1007/978-1-4613-0251-3_22.![]() ![]() ![]() |
[24] |
I. M. Pelayo, Geodesic Convexity in Graphs, SpringerBriefs in Mathematics, Springer, New York, 2013.
doi: 10.1007/978-1-4614-8699-2.![]() ![]() ![]() |
[25] |
M. Sion, On general minimax theorems, Pacific J. Math., 8 (1958), 171-176.
doi: 10.2140/pjm.1958.8.171.![]() ![]() ![]() |
[26] |
M. L. J. van de Vel, Theory of Convex Structures, North-Holland Mathematical Library, 50, North-Holland Publishing Co., Amsterdam, 1993.
![]() ![]() |