February  2022, 17(1): 73-99. doi: 10.3934/nhm.2021024

Telegraph systems on networks and port-Hamiltonians. Ⅱ. Network realizability

1. 

Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, South Africa

2. 

Institute of Mathematics, Lódź University of Technology Lódź, Poland

3. 

International Scientific Laboratory of Applied Semigroup Research South Ural State University, Chelyabinsk, Russia

Received  March 2021 Revised  October 2021 Published  February 2022 Early access  December 2021

Fund Project: J. B. acknowledges partial support from the National Science Centre of Poland Grant 2017/25/B/ST1/00051 and the National Research Foundation of South Africa Grant 82770. The research was completed while A. B. was a doctoral candidate in the Interdisciplinary Doctoral School at L´od´z University of Technology, Poland

Hyperbolic systems on networks often can be written as systems of first order equations on an interval, coupled by transmission conditions at the endpoints, also called port-Hamiltonians. However, general results for the latter have been difficult to interpret in the network language. The aim of this paper is to derive conditions under which a port-Hamiltonian with general linear Kirchhoff's boundary conditions can be written as a system of $ 2\times 2 $ hyperbolic equations on a metric graph $ \Gamma $. This is achieved by interpreting the matrix of the boundary conditions as a potential map of vertex connections of $ \Gamma $ and then showing that, under the derived assumptions, that matrix can be used to determine the adjacency matrix of $ \Gamma $.

Citation: Jacek Banasiak, Adam Błoch. Telegraph systems on networks and port-Hamiltonians. Ⅱ. Network realizability. Networks & Heterogeneous Media, 2022, 17 (1) : 73-99. doi: 10.3934/nhm.2021024
References:
[1]

F. Ali Mehmeti, Nonlinear Waves in Networks, vol. 80 of Mathematical Research, Akademie-Verlag, Berlin, 1994.  Google Scholar

[2]

J. Banasiak and A. Bƚoch, Telegraph systems on networks and port-Hamiltonians. I. Boundary conditions and well-posednes, Evol. Eq. Control Th., 2021. doi: 10.3934/eect.2021046.  Google Scholar

[3]

J. Banasiak and A. Falkiewicz, Some transport and diffusion processes on networks and their graph realizability, Appl. Math. Lett., 45 (2015), 25-30.  doi: 10.1016/j.aml.2015.01.006.  Google Scholar

[4]

J. BanasiakA. Falkiewicz and P. Namayanja, Semigroup approach to diffusion and transport problems on networks, Semigroup Forum, 93 (2016), 427-443.  doi: 10.1007/s00233-015-9730-4.  Google Scholar

[5]

J. Banasiak and P. Namayanja, Asymptotic behaviour of flows on reducible networks, Netw. Heterog. Media, 9 (2014), 197-216.  doi: 10.3934/nhm.2014.9.197.  Google Scholar

[6]

J. Bang-Jensen and G. Z. Gutin, Digraphs: Theory, Algorithms and Applications, Springer Science & Business Media, London, 2008. Google Scholar

[7]

G. Bastin and J.-M. Coron, Stability and Boundary Stabilization of 1-D Hyperbolic Systems, vol. 88, Springer, 2016. doi: 10.1007/978-3-319-32062-5.  Google Scholar

[8]

A. Bátkai, M. Kramar Fijavž and A. Rhandi, Positive Operator Semigroups. From Finite to Infinite Dimensions, vol. 257 of Operator Theory: Advances and Applications, Birkhäuser, Cham, 2017. doi: 10.1007/978-3-319-42813-0.  Google Scholar

[9]

R. A. BrualdiF. Harary and Z. Miller, Bigraphs versus digraphs via matrices, J. Graph Theory, 4 (1980), 51-73.  doi: 10.1002/jgt.3190040107.  Google Scholar

[10]

B. DornM. Kramar FijavžR. Nagel and A. Radl, The semigroup approach to transport processes in networks, Phys. D, 239 (2010), 1416-1421.  doi: 10.1016/j.physd.2009.06.012.  Google Scholar

[11]

M. K. Fijavž, D. Mugnolo and S. Nicaise, Linear hyperbolic systems on networks: Well-posedness and qualitative properties, ESAIM Control Optim. Calc. Var., 27 (2021), Paper No. 7, 46 pp. doi: 10.1051/cocv/2020091.  Google Scholar

[12]

F. R. Gantmacher, Applications of the Theory of Matrices, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1959.  Google Scholar

[13]

R. Hemminger and L. Beineke, Line graphs and line digraphs, in Selected Topics in Graph Theory I (eds. L. Beineke and R. Wilson), Academic Press, London, 1978,271–305. Google Scholar

[14]

B. JacobK. Morris and H. Zwart, $C_0$-semigroups for hyperbolic partial differential equations on a one-dimensional spatial domain, J. Evol. Equ., 15 (2015), 493-502.  doi: 10.1007/s00028-014-0271-1.  Google Scholar

[15]

B. Jacob and H. J. Zwart, Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces, vol. 223 of Operator Theory: Advances and Applications, Birkhäuser/Springer Basel AG, Basel, 2012. doi: 10.1007/978-3-0348-0399-1.  Google Scholar

[16]

B. Klöss, The flow approach for waves in networks, Oper. Matrices, 6 (2012), 107-128.  doi: 10.7153/oam-06-08.  Google Scholar

[17]

P. Kuchment, Quantum graphs: An introduction and a brief survey, in Analysis on Graphs and its Applications, vol. 77 of Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 2008,291–312. doi: 10.1090/pspum/077/2459876.  Google Scholar

[18]

C. D. Meyer, Matrix Analysis and Applied Linear Algebra, vol. 71, SIAM, Philadelphia, 2000. doi: 10.1137/1.9780898719512.  Google Scholar

[19]

D. Mugnolo, Semigroup Methods for Evolution Equations on Networks, Understanding Complex Systems, Springer, Cham, 2014. doi: 10.1007/978-3-319-04621-1.  Google Scholar

[20]

S. Nicaise, Control and stabilization of $2\times 2$ hyperbolic systems on graphs, Math. Control Relat. Fields, 7 (2017), 53-72.  doi: 10.3934/mcrf.2017004.  Google Scholar

[21]

H. ZwartY. Le GorrecB. Maschke and J. Villegas, Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain, ESAIM Control Optim. Calc. Var., 16 (2010), 1077-1093.  doi: 10.1051/cocv/2009036.  Google Scholar

show all references

References:
[1]

F. Ali Mehmeti, Nonlinear Waves in Networks, vol. 80 of Mathematical Research, Akademie-Verlag, Berlin, 1994.  Google Scholar

[2]

J. Banasiak and A. Bƚoch, Telegraph systems on networks and port-Hamiltonians. I. Boundary conditions and well-posednes, Evol. Eq. Control Th., 2021. doi: 10.3934/eect.2021046.  Google Scholar

[3]

J. Banasiak and A. Falkiewicz, Some transport and diffusion processes on networks and their graph realizability, Appl. Math. Lett., 45 (2015), 25-30.  doi: 10.1016/j.aml.2015.01.006.  Google Scholar

[4]

J. BanasiakA. Falkiewicz and P. Namayanja, Semigroup approach to diffusion and transport problems on networks, Semigroup Forum, 93 (2016), 427-443.  doi: 10.1007/s00233-015-9730-4.  Google Scholar

[5]

J. Banasiak and P. Namayanja, Asymptotic behaviour of flows on reducible networks, Netw. Heterog. Media, 9 (2014), 197-216.  doi: 10.3934/nhm.2014.9.197.  Google Scholar

[6]

J. Bang-Jensen and G. Z. Gutin, Digraphs: Theory, Algorithms and Applications, Springer Science & Business Media, London, 2008. Google Scholar

[7]

G. Bastin and J.-M. Coron, Stability and Boundary Stabilization of 1-D Hyperbolic Systems, vol. 88, Springer, 2016. doi: 10.1007/978-3-319-32062-5.  Google Scholar

[8]

A. Bátkai, M. Kramar Fijavž and A. Rhandi, Positive Operator Semigroups. From Finite to Infinite Dimensions, vol. 257 of Operator Theory: Advances and Applications, Birkhäuser, Cham, 2017. doi: 10.1007/978-3-319-42813-0.  Google Scholar

[9]

R. A. BrualdiF. Harary and Z. Miller, Bigraphs versus digraphs via matrices, J. Graph Theory, 4 (1980), 51-73.  doi: 10.1002/jgt.3190040107.  Google Scholar

[10]

B. DornM. Kramar FijavžR. Nagel and A. Radl, The semigroup approach to transport processes in networks, Phys. D, 239 (2010), 1416-1421.  doi: 10.1016/j.physd.2009.06.012.  Google Scholar

[11]

M. K. Fijavž, D. Mugnolo and S. Nicaise, Linear hyperbolic systems on networks: Well-posedness and qualitative properties, ESAIM Control Optim. Calc. Var., 27 (2021), Paper No. 7, 46 pp. doi: 10.1051/cocv/2020091.  Google Scholar

[12]

F. R. Gantmacher, Applications of the Theory of Matrices, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1959.  Google Scholar

[13]

R. Hemminger and L. Beineke, Line graphs and line digraphs, in Selected Topics in Graph Theory I (eds. L. Beineke and R. Wilson), Academic Press, London, 1978,271–305. Google Scholar

[14]

B. JacobK. Morris and H. Zwart, $C_0$-semigroups for hyperbolic partial differential equations on a one-dimensional spatial domain, J. Evol. Equ., 15 (2015), 493-502.  doi: 10.1007/s00028-014-0271-1.  Google Scholar

[15]

B. Jacob and H. J. Zwart, Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces, vol. 223 of Operator Theory: Advances and Applications, Birkhäuser/Springer Basel AG, Basel, 2012. doi: 10.1007/978-3-0348-0399-1.  Google Scholar

[16]

B. Klöss, The flow approach for waves in networks, Oper. Matrices, 6 (2012), 107-128.  doi: 10.7153/oam-06-08.  Google Scholar

[17]

P. Kuchment, Quantum graphs: An introduction and a brief survey, in Analysis on Graphs and its Applications, vol. 77 of Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 2008,291–312. doi: 10.1090/pspum/077/2459876.  Google Scholar

[18]

C. D. Meyer, Matrix Analysis and Applied Linear Algebra, vol. 71, SIAM, Philadelphia, 2000. doi: 10.1137/1.9780898719512.  Google Scholar

[19]

D. Mugnolo, Semigroup Methods for Evolution Equations on Networks, Understanding Complex Systems, Springer, Cham, 2014. doi: 10.1007/978-3-319-04621-1.  Google Scholar

[20]

S. Nicaise, Control and stabilization of $2\times 2$ hyperbolic systems on graphs, Math. Control Relat. Fields, 7 (2017), 53-72.  doi: 10.3934/mcrf.2017004.  Google Scholar

[21]

H. ZwartY. Le GorrecB. Maschke and J. Villegas, Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain, ESAIM Control Optim. Calc. Var., 16 (2010), 1077-1093.  doi: 10.1051/cocv/2009036.  Google Scholar

Figure 1.  Starlike network of channels
Figure 2.  The reconstructed multi digraph $ \boldsymbol{\Gamma} $. It is seen that it cannot describe a flow on $ \Gamma $ as $ \varpi_5 $ and $ \varpi_6 $ must flow in the same direction
Figure 3.  The reconstructed multi digraph $ \boldsymbol{\Gamma} $ for (46), (47)
Figure 4.  A network $ \Gamma $ realizing the flow (48), (49)
Figure 5.  Multi digraphs $ G_1 $ with 3 sources and two sinks and $ G_2 $ with all sources and all sinks grouped into a single source and a single sink
Figure 6.  The line digraph for both $ G_1 $ and $ G_2 $
[1]

Serge Nicaise. Control and stabilization of 2 × 2 hyperbolic systems on graphs. Mathematical Control & Related Fields, 2017, 7 (1) : 53-72. doi: 10.3934/mcrf.2017004

[2]

Delio Mugnolo. Dynamical systems associated with adjacency matrices. Discrete & Continuous Dynamical Systems - B, 2018, 23 (5) : 1945-1973. doi: 10.3934/dcdsb.2018190

[3]

Zhong-Jie Han, Enrique Zuazua. Decay rates for $1-d$ heat-wave planar networks. Networks & Heterogeneous Media, 2016, 11 (4) : 655-692. doi: 10.3934/nhm.2016013

[4]

Harbir Antil, Shodai Kubota, Ken Shirakawa, Noriaki Yamazaki. Optimal control problems governed by 1-D Kobayashi–Warren–Carter type systems. Mathematical Control & Related Fields, 2021, 11 (2) : 253-289. doi: 10.3934/mcrf.2020036

[5]

Fabio Ancona, Andrea Marson. On the Glimm Functional for general hyperbolic systems. Conference Publications, 2011, 2011 (Special) : 44-53. doi: 10.3934/proc.2011.2011.44

[6]

Matthew Nicol. Induced maps of hyperbolic Bernoulli systems. Discrete & Continuous Dynamical Systems, 2001, 7 (1) : 147-154. doi: 10.3934/dcds.2001.7.147

[7]

Tai-Ping Liu, Shih-Hsien Yu. Hyperbolic conservation laws and dynamic systems. Discrete & Continuous Dynamical Systems, 2000, 6 (1) : 143-145. doi: 10.3934/dcds.2000.6.143

[8]

Serge Nicaise, Julie Valein. Stabilization of the wave equation on 1-d networks with a delay term in the nodal feedbacks. Networks & Heterogeneous Media, 2007, 2 (3) : 425-479. doi: 10.3934/nhm.2007.2.425

[9]

Libin Wang. Breakdown of $C^1$ solution to the Cauchy problem for quasilinear hyperbolic systems with characteristics with constant multiplicity. Communications on Pure & Applied Analysis, 2003, 2 (1) : 77-89. doi: 10.3934/cpaa.2003.2.77

[10]

Pengfei Zhang. Partially hyperbolic sets with positive measure and $ACIP$ for partially hyperbolic systems. Discrete & Continuous Dynamical Systems, 2012, 32 (4) : 1435-1447. doi: 10.3934/dcds.2012.32.1435

[11]

Christian Rohde, Wenjun Wang, Feng Xie. Hyperbolic-hyperbolic relaxation limit for a 1D compressible radiation hydrodynamics model: superposition of rarefaction and contact waves. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2145-2171. doi: 10.3934/cpaa.2013.12.2145

[12]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[13]

Renato Manfrin. On the global solvability of symmetric hyperbolic systems of Kirchhoff type. Discrete & Continuous Dynamical Systems, 1997, 3 (1) : 91-106. doi: 10.3934/dcds.1997.3.91

[14]

Tatsien Li, Zhiqiang Wang. A note on the exact controllability for nonautonomous hyperbolic systems. Communications on Pure & Applied Analysis, 2007, 6 (1) : 229-235. doi: 10.3934/cpaa.2007.6.229

[15]

Kais Ammari, Eduard Feireisl, Serge Nicaise. Polynomial stabilization of some dissipative hyperbolic systems. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4371-4388. doi: 10.3934/dcds.2014.34.4371

[16]

Alberto Bressan, Marta Lewicka. A uniqueness condition for hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems, 2000, 6 (3) : 673-682. doi: 10.3934/dcds.2000.6.673

[17]

Andrew D. Barwell, Chris Good, Piotr Oprocha, Brian E. Raines. Characterizations of $\omega$-limit sets in topologically hyperbolic systems. Discrete & Continuous Dynamical Systems, 2013, 33 (5) : 1819-1833. doi: 10.3934/dcds.2013.33.1819

[18]

Adil Khazari, Ali Boutoulout. Flux reconstruction for hyperbolic systems: Sensors and simulations. Evolution Equations & Control Theory, 2015, 4 (2) : 177-192. doi: 10.3934/eect.2015.4.177

[19]

N. V. Chemetov. Nonlinear hyperbolic-elliptic systems in the bounded domain. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1079-1096. doi: 10.3934/cpaa.2011.10.1079

[20]

Boris Kalinin, Victoria Sadovskaya. Linear cocycles over hyperbolic systems and criteria of conformality. Journal of Modern Dynamics, 2010, 4 (3) : 419-441. doi: 10.3934/jmd.2010.4.419

2020 Impact Factor: 1.213

Metrics

  • PDF downloads (61)
  • HTML views (41)
  • Cited by (0)

Other articles
by authors

[Back to Top]