Article Contents
Article Contents

# Nonlocal reaction traffic flow model with on-off ramps

• * Corresponding author: Luis Miguel Villada
• We present a non-local version of a scalar balance law modeling traffic flow with on-ramps and off-ramps. The source term is used to describe the inflow and output flow over the on-ramp and off-ramps respectively. We approximate the problem using an upwind-type numerical scheme and we provide $\mathbf{L^{\infty}}$ and $\mathbf{BV}$ estimates for the sequence of approximate solutions. Together with a discrete entropy inequality, we also show the well-posedness of the considered class of scalar balance laws. Some numerical simulations illustrate the behaviour of solutions in sample cases.

Mathematics Subject Classification: Primary: 65M08; Secondary: 35L45, 90B20.

 Citation:

• Figure 1.  Illustration of the model setting

Figure 2.  Example 1. Numerical approximations of the problem (2.1). Dynamic of Model 1 vs. Model 2 at (a)$T = 0.5$, (b)$T = 2$, (c)$T = 5$, (d)$T = 7$

Figure 3.  Example 2. Numerical approximations of the problem (2.1) at $T = 5$. Comparison of local and non-local versions of the model (2.1) with $\delta = 0$ and different values for $\eta$

Figure 4.  Example 3. Numerical approximation at time $T = 0.3$. (a) Model 1, Model 2 satisfying a maximum principle and Model 0 not satisfying a maximum principle. (b) Zoom of a part of (a)

Figure 5.  Example 4. Dynamic of the model (2.1). Behavior of the numerical solution computed with Algorithm 3.1 by means of Model 1 and Model 2 at time (a)$T = 1$, (b)$T = 2$, (c)$T = 5$, (d)$T = 7$

Table 1.  Example 2. $\mathbf{L^{1}}$ distance between the approximate solutions to the non-local problem and the local problem for different values of $\eta$ at $T = 5$ with $\Delta x = 1/1000$

 $\eta$ 0.1 0.05 0.01 0.004 $\mathbf{L^{1}}$ distance 0.28 0.16 0.036 0.011
•  [1] P. Amorim, R. M. Colombo and A. Teixeira, On the numerical integration of scalar nonlocal conservation laws, ESAIM: Mathematical Modelling and Numerical Analysis, 49 (2015), 19-37.  doi: 10.1051/m2an/2014023. [2] A. Bayen, A. Keimer, L. Pflug and T. Veeravalli, Modeling multi-lane traffic with moving obstacles by nonlocal balance laws, Preprint, (2020). [3] S. Blandin and P. Goatin, Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, Numerische Mathematik, 132 (2016), 217-241.  doi: 10.1007/s00211-015-0717-6. [4] F. A. Chiarello, J. Friedrich, P. Goatin, S. Göttlich and O. Kolb, A non-local traffic flow model for 1-to-1 junctions, European Journal of Applied Mathematics, 31 (2020), 1029-1049.  doi: 10.1017/S095679251900038X. [5] F. A. Chiarello and P. Goatin, Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel, ESAIM: Mathematical Modelling and Numerical Analysis, 52 (2018), 163-180.  doi: 10.1051/m2an/2017066. [6] F. A. Chiarello and P. Goatin, Non-local multi-class traffic flow models, Networks & Heterogeneous Media, 14 (2019), 371-380.  doi: 10.3934/nhm.2019015. [7] M. L. Delle Monache, J. Reilly, S. Samaranayake, W. Krichene, P. Goatin and A. M. Bayen, A PDE-ODE model for a junction with ramp buffer, SIAM Journal on Applied Mathematics, 74 (2014), 22-39.  doi: 10.1137/130908993. [8] J. Friedrich, S. Göttlich and E. Rossi, Nonlocal approaches for multilane traffic models, Commun. Math. Sci., 19 (2021), 2291–2317, arXiv preprint, arXiv: 2012.05794, (2020). doi: 10.4310/CMS.2021.v19.n8.a10. [9] J. Friedrich, O. Kolb and S. Göttlich, A godunov type scheme for a class of lwr traffic flow models with non-local flux, Networks & Heterogeneous Media, 13 (2018), 531-547.  doi: 10.3934/nhm.2018024. [10] P. Goatin and E. Rossi, A multilane macroscopic traffic flow model for simple networks, SIAM Journal on Applied Mathematics, 79 (2019), 1967-1989.  doi: 10.1137/19M1254386. [11] P. Goatin and S. Scialanga, Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity, Netw. Heterog. Media, 11 (2016), 107-121.  doi: 10.3934/nhm.2016.11.107. [12] Y. Han, M. Ramezani, A. Hegyi, Y. Yuan and S. Hoogendoorn, Hierarchical ramp metering in freeways: An aggregated modeling and control approach, Transportation Research Part C: Emerging Technologies, 110 (2020), 1-19.  doi: 10.1016/j.trc.2019.09.023. [13] D. Helbing, A. Hennecke, V. Shvetsov and M. Treiber, Master: Macroscopic traffic simulation based on a gas-kinetic, non-local traffic model, Transportation Research Part B: Methodological, 35 (2001), 183-211.  doi: 10.1016/S0191-2615(99)00047-8. [14] H. Holden and N. H. Risebro, Models for dense multilane vehicular traffic, SIAM Journal on Mathematical Analysis, 51 (2019), 3694-3713.  doi: 10.1137/19M124318X. [15] D. Jacquet, C. C. De Wit and D. Koenig, Optimal ramp metering strategy with extended lwr model, analysis and computational methods, IFAC Proceedings Volumes, 38 (2005), 99-104.  doi: 10.3182/20050703-6-CZ-1902.00877. [16] G. Lipták, M. Pereira, B. Kulcsár, M. Kovács and G. Szederkényi, Traffic reaction model, arXiv preprint, arXiv: 2101.10190, (2021). [17] G. Liu, A. S. Lyrintzis and P. G. Michalopoulos, Modelling of freeway merging and diverging flow dynamics, Applied Mathematical Modelling, 20 (1996), 459-469.  doi: 10.1016/0307-904X(95)00165-G. [18] A. Sopasakis and M. A. Katsoulakis, Stochastic modeling and simulation of traffic flow: Asymmetric single exclusion process with arrhenius look-ahead dynamics, SIAM Journal on Applied Mathematics, 66 (2006), 921-944.  doi: 10.1137/040617790. [19] J. Sun, Z. Li and J. Sun, Study on traffic characteristics for a typical expressway on-ramp bottleneck considering various merging behaviors, Physica A: Statistical Mechanics and its Applications, 440 (2015), 57-67.  doi: 10.1016/j.physa.2015.08.007. [20] T.-Q. Tang, H. J. Huang and H.-Y. Shang, Effects of the number of on-ramps on the ring traffic flow, Chinese Physics B, 19 (2010), 050517.  doi: 10.1088/1674-1056/19/5/050517. [21] T.-Q. Tang, H. J. Huang, S. C. Wong, Z.-Y. Gao and Y. Zhang, A new macro model for traffic flow on a highway with ramps and numerical tests, Communications in Theoretical Physics, 51 (2009), 71.  doi: 10.1088/0253-6102/51/1/15. [22] T. Wang, J. Zhang, Z. Gao, W. Zhang and S. Li, Congested traffic patterns of two-lane lattice hydrodynamic model with on-ramp, Nonlinear Dynamics, 88 (2017), 1345-1359.  doi: 10.1007/s11071-016-3314-z.

Figures(5)

Tables(1)