
-
Previous Article
Stochastic two-scale convergence and Young measures
- NHM Home
- This Issue
-
Next Article
Homogenization of stiff inclusions through network approximation
Nonlocal reaction traffic flow model with on-off ramps
1. | Department of Mathematical Sciences "G. L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy |
2. | GIMNAP-Departamento de Matemáticas, Universidad del Bío-Bío, Concepción, Chile |
3. | GIMNAP-Departamento de Matemáticas, Universidad del Bío-Bío, Concepción, Chile, and CI2MA, Universidad de Concepción, Casilla 160-C, Concepción, Chile |
We present a non-local version of a scalar balance law modeling traffic flow with on-ramps and off-ramps. The source term is used to describe the inflow and output flow over the on-ramp and off-ramps respectively. We approximate the problem using an upwind-type numerical scheme and we provide $ \mathbf{L^{\infty}} $ and $ \mathbf{BV} $ estimates for the sequence of approximate solutions. Together with a discrete entropy inequality, we also show the well-posedness of the considered class of scalar balance laws. Some numerical simulations illustrate the behaviour of solutions in sample cases.
References:
[1] |
P. Amorim, R. M. Colombo and A. Teixeira,
On the numerical integration of scalar nonlocal conservation laws, ESAIM: Mathematical Modelling and Numerical Analysis, 49 (2015), 19-37.
doi: 10.1051/m2an/2014023. |
[2] |
A. Bayen, A. Keimer, L. Pflug and T. Veeravalli, Modeling multi-lane traffic with moving obstacles by nonlocal balance laws, Preprint, (2020). |
[3] |
S. Blandin and P. Goatin,
Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, Numerische Mathematik, 132 (2016), 217-241.
doi: 10.1007/s00211-015-0717-6. |
[4] |
F. A. Chiarello, J. Friedrich, P. Goatin, S. Göttlich and O. Kolb,
A non-local traffic flow model for 1-to-1 junctions, European Journal of Applied Mathematics, 31 (2020), 1029-1049.
doi: 10.1017/S095679251900038X. |
[5] |
F. A. Chiarello and P. Goatin,
Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel, ESAIM: Mathematical Modelling and Numerical Analysis, 52 (2018), 163-180.
doi: 10.1051/m2an/2017066. |
[6] |
F. A. Chiarello and P. Goatin,
Non-local multi-class traffic flow models, Networks & Heterogeneous Media, 14 (2019), 371-380.
doi: 10.3934/nhm.2019015. |
[7] |
M. L. Delle Monache, J. Reilly, S. Samaranayake, W. Krichene, P. Goatin and A. M. Bayen,
A PDE-ODE model for a junction with ramp buffer, SIAM Journal on Applied Mathematics, 74 (2014), 22-39.
doi: 10.1137/130908993. |
[8] |
J. Friedrich, S. Göttlich and E. Rossi, Nonlocal approaches for multilane traffic models, Commun. Math. Sci., 19 (2021), 2291–2317, arXiv preprint, arXiv: 2012.05794, (2020).
doi: 10.4310/CMS.2021.v19.n8.a10. |
[9] |
J. Friedrich, O. Kolb and S. Göttlich,
A godunov type scheme for a class of lwr traffic flow models with non-local flux, Networks & Heterogeneous Media, 13 (2018), 531-547.
doi: 10.3934/nhm.2018024. |
[10] |
P. Goatin and E. Rossi,
A multilane macroscopic traffic flow model for simple networks, SIAM Journal on Applied Mathematics, 79 (2019), 1967-1989.
doi: 10.1137/19M1254386. |
[11] |
P. Goatin and S. Scialanga,
Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity, Netw. Heterog. Media, 11 (2016), 107-121.
doi: 10.3934/nhm.2016.11.107. |
[12] |
Y. Han, M. Ramezani, A. Hegyi, Y. Yuan and S. Hoogendoorn,
Hierarchical ramp metering in freeways: An aggregated modeling and control approach, Transportation Research Part C: Emerging Technologies, 110 (2020), 1-19.
doi: 10.1016/j.trc.2019.09.023. |
[13] |
D. Helbing, A. Hennecke, V. Shvetsov and M. Treiber,
Master: Macroscopic traffic simulation based on a gas-kinetic, non-local traffic model, Transportation Research Part B: Methodological, 35 (2001), 183-211.
doi: 10.1016/S0191-2615(99)00047-8. |
[14] |
H. Holden and N. H. Risebro,
Models for dense multilane vehicular traffic, SIAM Journal on Mathematical Analysis, 51 (2019), 3694-3713.
doi: 10.1137/19M124318X. |
[15] |
D. Jacquet, C. C. De Wit and D. Koenig,
Optimal ramp metering strategy with extended lwr model, analysis and computational methods, IFAC Proceedings Volumes, 38 (2005), 99-104.
doi: 10.3182/20050703-6-CZ-1902.00877. |
[16] |
G. Lipták, M. Pereira, B. Kulcsár, M. Kovács and G. Szederkényi, Traffic reaction model, arXiv preprint, arXiv: 2101.10190, (2021). |
[17] |
G. Liu, A. S. Lyrintzis and P. G. Michalopoulos,
Modelling of freeway merging and diverging flow dynamics, Applied Mathematical Modelling, 20 (1996), 459-469.
doi: 10.1016/0307-904X(95)00165-G. |
[18] |
A. Sopasakis and M. A. Katsoulakis,
Stochastic modeling and simulation of traffic flow: Asymmetric single exclusion process with arrhenius look-ahead dynamics, SIAM Journal on Applied Mathematics, 66 (2006), 921-944.
doi: 10.1137/040617790. |
[19] |
J. Sun, Z. Li and J. Sun,
Study on traffic characteristics for a typical expressway on-ramp bottleneck considering various merging behaviors, Physica A: Statistical Mechanics and its Applications, 440 (2015), 57-67.
doi: 10.1016/j.physa.2015.08.007. |
[20] |
T.-Q. Tang, H. J. Huang and H.-Y. Shang,
Effects of the number of on-ramps on the ring traffic flow, Chinese Physics B, 19 (2010), 050517.
doi: 10.1088/1674-1056/19/5/050517. |
[21] |
T.-Q. Tang, H. J. Huang, S. C. Wong, Z.-Y. Gao and Y. Zhang,
A new macro model for traffic flow on a highway with ramps and numerical tests, Communications in Theoretical Physics, 51 (2009), 71.
doi: 10.1088/0253-6102/51/1/15. |
[22] |
T. Wang, J. Zhang, Z. Gao, W. Zhang and S. Li,
Congested traffic patterns of two-lane lattice hydrodynamic model with on-ramp, Nonlinear Dynamics, 88 (2017), 1345-1359.
doi: 10.1007/s11071-016-3314-z. |
show all references
References:
[1] |
P. Amorim, R. M. Colombo and A. Teixeira,
On the numerical integration of scalar nonlocal conservation laws, ESAIM: Mathematical Modelling and Numerical Analysis, 49 (2015), 19-37.
doi: 10.1051/m2an/2014023. |
[2] |
A. Bayen, A. Keimer, L. Pflug and T. Veeravalli, Modeling multi-lane traffic with moving obstacles by nonlocal balance laws, Preprint, (2020). |
[3] |
S. Blandin and P. Goatin,
Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, Numerische Mathematik, 132 (2016), 217-241.
doi: 10.1007/s00211-015-0717-6. |
[4] |
F. A. Chiarello, J. Friedrich, P. Goatin, S. Göttlich and O. Kolb,
A non-local traffic flow model for 1-to-1 junctions, European Journal of Applied Mathematics, 31 (2020), 1029-1049.
doi: 10.1017/S095679251900038X. |
[5] |
F. A. Chiarello and P. Goatin,
Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel, ESAIM: Mathematical Modelling and Numerical Analysis, 52 (2018), 163-180.
doi: 10.1051/m2an/2017066. |
[6] |
F. A. Chiarello and P. Goatin,
Non-local multi-class traffic flow models, Networks & Heterogeneous Media, 14 (2019), 371-380.
doi: 10.3934/nhm.2019015. |
[7] |
M. L. Delle Monache, J. Reilly, S. Samaranayake, W. Krichene, P. Goatin and A. M. Bayen,
A PDE-ODE model for a junction with ramp buffer, SIAM Journal on Applied Mathematics, 74 (2014), 22-39.
doi: 10.1137/130908993. |
[8] |
J. Friedrich, S. Göttlich and E. Rossi, Nonlocal approaches for multilane traffic models, Commun. Math. Sci., 19 (2021), 2291–2317, arXiv preprint, arXiv: 2012.05794, (2020).
doi: 10.4310/CMS.2021.v19.n8.a10. |
[9] |
J. Friedrich, O. Kolb and S. Göttlich,
A godunov type scheme for a class of lwr traffic flow models with non-local flux, Networks & Heterogeneous Media, 13 (2018), 531-547.
doi: 10.3934/nhm.2018024. |
[10] |
P. Goatin and E. Rossi,
A multilane macroscopic traffic flow model for simple networks, SIAM Journal on Applied Mathematics, 79 (2019), 1967-1989.
doi: 10.1137/19M1254386. |
[11] |
P. Goatin and S. Scialanga,
Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity, Netw. Heterog. Media, 11 (2016), 107-121.
doi: 10.3934/nhm.2016.11.107. |
[12] |
Y. Han, M. Ramezani, A. Hegyi, Y. Yuan and S. Hoogendoorn,
Hierarchical ramp metering in freeways: An aggregated modeling and control approach, Transportation Research Part C: Emerging Technologies, 110 (2020), 1-19.
doi: 10.1016/j.trc.2019.09.023. |
[13] |
D. Helbing, A. Hennecke, V. Shvetsov and M. Treiber,
Master: Macroscopic traffic simulation based on a gas-kinetic, non-local traffic model, Transportation Research Part B: Methodological, 35 (2001), 183-211.
doi: 10.1016/S0191-2615(99)00047-8. |
[14] |
H. Holden and N. H. Risebro,
Models for dense multilane vehicular traffic, SIAM Journal on Mathematical Analysis, 51 (2019), 3694-3713.
doi: 10.1137/19M124318X. |
[15] |
D. Jacquet, C. C. De Wit and D. Koenig,
Optimal ramp metering strategy with extended lwr model, analysis and computational methods, IFAC Proceedings Volumes, 38 (2005), 99-104.
doi: 10.3182/20050703-6-CZ-1902.00877. |
[16] |
G. Lipták, M. Pereira, B. Kulcsár, M. Kovács and G. Szederkényi, Traffic reaction model, arXiv preprint, arXiv: 2101.10190, (2021). |
[17] |
G. Liu, A. S. Lyrintzis and P. G. Michalopoulos,
Modelling of freeway merging and diverging flow dynamics, Applied Mathematical Modelling, 20 (1996), 459-469.
doi: 10.1016/0307-904X(95)00165-G. |
[18] |
A. Sopasakis and M. A. Katsoulakis,
Stochastic modeling and simulation of traffic flow: Asymmetric single exclusion process with arrhenius look-ahead dynamics, SIAM Journal on Applied Mathematics, 66 (2006), 921-944.
doi: 10.1137/040617790. |
[19] |
J. Sun, Z. Li and J. Sun,
Study on traffic characteristics for a typical expressway on-ramp bottleneck considering various merging behaviors, Physica A: Statistical Mechanics and its Applications, 440 (2015), 57-67.
doi: 10.1016/j.physa.2015.08.007. |
[20] |
T.-Q. Tang, H. J. Huang and H.-Y. Shang,
Effects of the number of on-ramps on the ring traffic flow, Chinese Physics B, 19 (2010), 050517.
doi: 10.1088/1674-1056/19/5/050517. |
[21] |
T.-Q. Tang, H. J. Huang, S. C. Wong, Z.-Y. Gao and Y. Zhang,
A new macro model for traffic flow on a highway with ramps and numerical tests, Communications in Theoretical Physics, 51 (2009), 71.
doi: 10.1088/0253-6102/51/1/15. |
[22] |
T. Wang, J. Zhang, Z. Gao, W. Zhang and S. Li,
Congested traffic patterns of two-lane lattice hydrodynamic model with on-ramp, Nonlinear Dynamics, 88 (2017), 1345-1359.
doi: 10.1007/s11071-016-3314-z. |





0.1 | 0.05 | 0.01 | 0.004 | |
2.8e-1 | 1.6e-1 | 3.6e-2 | 1.1e-2 |
0.1 | 0.05 | 0.01 | 0.004 | |
2.8e-1 | 1.6e-1 | 3.6e-2 | 1.1e-2 |
[1] |
Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada. A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks and Heterogeneous Media, 2021, 16 (2) : 187-219. doi: 10.3934/nhm.2021004 |
[2] |
Helge Holden, Nils Henrik Risebro. Follow-the-Leader models can be viewed as a numerical approximation to the Lighthill-Whitham-Richards model for traffic flow. Networks and Heterogeneous Media, 2018, 13 (3) : 409-421. doi: 10.3934/nhm.2018018 |
[3] |
Boris P. Andreianov, Giuseppe Maria Coclite, Carlotta Donadello. Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5913-5942. doi: 10.3934/dcds.2017257 |
[4] |
Young-Sam Kwon. On the well-posedness of entropy solutions for conservation laws with source terms. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 933-949. doi: 10.3934/dcds.2009.25.933 |
[5] |
Markus Musch, Ulrik Skre Fjordholm, Nils Henrik Risebro. Well-posedness theory for nonlinear scalar conservation laws on networks. Networks and Heterogeneous Media, 2022, 17 (1) : 101-128. doi: 10.3934/nhm.2021025 |
[6] |
Abraham Sylla. Influence of a slow moving vehicle on traffic: Well-posedness and approximation for a mildly nonlocal model. Networks and Heterogeneous Media, 2021, 16 (2) : 221-256. doi: 10.3934/nhm.2021005 |
[7] |
Tong Li. Well-posedness theory of an inhomogeneous traffic flow model. Discrete and Continuous Dynamical Systems - B, 2002, 2 (3) : 401-414. doi: 10.3934/dcdsb.2002.2.401 |
[8] |
Wen Shen. Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads. Networks and Heterogeneous Media, 2019, 14 (4) : 709-732. doi: 10.3934/nhm.2019028 |
[9] |
Paola Goatin, Sheila Scialanga. Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Networks and Heterogeneous Media, 2016, 11 (1) : 107-121. doi: 10.3934/nhm.2016.11.107 |
[10] |
Carlos F. Daganzo. On the variational theory of traffic flow: well-posedness, duality and applications. Networks and Heterogeneous Media, 2006, 1 (4) : 601-619. doi: 10.3934/nhm.2006.1.601 |
[11] |
Elissar Nasreddine. Well-posedness for a model of individual clustering. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2647-2668. doi: 10.3934/dcdsb.2013.18.2647 |
[12] |
David M. Ambrose, Jerry L. Bona, David P. Nicholls. Well-posedness of a model for water waves with viscosity. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1113-1137. doi: 10.3934/dcdsb.2012.17.1113 |
[13] |
Luc Molinet, Francis Ribaud. On global well-posedness for a class of nonlocal dispersive wave equations. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 657-668. doi: 10.3934/dcds.2006.15.657 |
[14] |
Manas Bhatnagar, Hailiang Liu. Well-posedness and critical thresholds in a nonlocal Euler system with relaxation. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5271-5289. doi: 10.3934/dcds.2021076 |
[15] |
Elena Rossi. Well-posedness of general 1D initial boundary value problems for scalar balance laws. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3577-3608. doi: 10.3934/dcds.2019147 |
[16] |
Mario Bukal. Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3389-3414. doi: 10.3934/dcds.2021001 |
[17] |
Caochuan Ma, Zaihong Jiang, Renhui Wan. Local well-posedness for the tropical climate model with fractional velocity diffusion. Kinetic and Related Models, 2016, 9 (3) : 551-570. doi: 10.3934/krm.2016006 |
[18] |
Jinkai Li, Edriss Titi. Global well-posedness of strong solutions to a tropical climate model. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4495-4516. doi: 10.3934/dcds.2016.36.4495 |
[19] |
David Melching, Ulisse Stefanelli. Well-posedness of a one-dimensional nonlinear kinematic hardening model. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2271-2284. doi: 10.3934/dcdss.2020188 |
[20] |
Alberto Bressan, Michele Palladino. Well-posedness of a model for the growth of tree stems and vines. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 2047-2064. doi: 10.3934/dcds.2018083 |
2021 Impact Factor: 1.41
Tools
Metrics
Other articles
by authors
[Back to Top]