0.1 | 0.05 | 0.01 | 0.004 | |
2.8e-1 | 1.6e-1 | 3.6e-2 | 1.1e-2 |
We present a non-local version of a scalar balance law modeling traffic flow with on-ramps and off-ramps. The source term is used to describe the inflow and output flow over the on-ramp and off-ramps respectively. We approximate the problem using an upwind-type numerical scheme and we provide $ \mathbf{L^{\infty}} $ and $ \mathbf{BV} $ estimates for the sequence of approximate solutions. Together with a discrete entropy inequality, we also show the well-posedness of the considered class of scalar balance laws. Some numerical simulations illustrate the behaviour of solutions in sample cases.
Citation: |
Table 1.
Example 2.
0.1 | 0.05 | 0.01 | 0.004 | |
2.8e-1 | 1.6e-1 | 3.6e-2 | 1.1e-2 |
[1] | P. Amorim, R. M. Colombo and A. Teixeira, On the numerical integration of scalar nonlocal conservation laws, ESAIM: Mathematical Modelling and Numerical Analysis, 49 (2015), 19-37. doi: 10.1051/m2an/2014023. |
[2] | A. Bayen, A. Keimer, L. Pflug and T. Veeravalli, Modeling multi-lane traffic with moving obstacles by nonlocal balance laws, Preprint, (2020). |
[3] | S. Blandin and P. Goatin, Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, Numerische Mathematik, 132 (2016), 217-241. doi: 10.1007/s00211-015-0717-6. |
[4] | F. A. Chiarello, J. Friedrich, P. Goatin, S. Göttlich and O. Kolb, A non-local traffic flow model for 1-to-1 junctions, European Journal of Applied Mathematics, 31 (2020), 1029-1049. doi: 10.1017/S095679251900038X. |
[5] | F. A. Chiarello and P. Goatin, Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel, ESAIM: Mathematical Modelling and Numerical Analysis, 52 (2018), 163-180. doi: 10.1051/m2an/2017066. |
[6] | F. A. Chiarello and P. Goatin, Non-local multi-class traffic flow models, Networks & Heterogeneous Media, 14 (2019), 371-380. doi: 10.3934/nhm.2019015. |
[7] | M. L. Delle Monache, J. Reilly, S. Samaranayake, W. Krichene, P. Goatin and A. M. Bayen, A PDE-ODE model for a junction with ramp buffer, SIAM Journal on Applied Mathematics, 74 (2014), 22-39. doi: 10.1137/130908993. |
[8] | J. Friedrich, S. Göttlich and E. Rossi, Nonlocal approaches for multilane traffic models, Commun. Math. Sci., 19 (2021), 2291–2317, arXiv preprint, arXiv: 2012.05794, (2020). doi: 10.4310/CMS.2021.v19.n8.a10. |
[9] | J. Friedrich, O. Kolb and S. Göttlich, A godunov type scheme for a class of lwr traffic flow models with non-local flux, Networks & Heterogeneous Media, 13 (2018), 531-547. doi: 10.3934/nhm.2018024. |
[10] | P. Goatin and E. Rossi, A multilane macroscopic traffic flow model for simple networks, SIAM Journal on Applied Mathematics, 79 (2019), 1967-1989. doi: 10.1137/19M1254386. |
[11] | P. Goatin and S. Scialanga, Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity, Netw. Heterog. Media, 11 (2016), 107-121. doi: 10.3934/nhm.2016.11.107. |
[12] | Y. Han, M. Ramezani, A. Hegyi, Y. Yuan and S. Hoogendoorn, Hierarchical ramp metering in freeways: An aggregated modeling and control approach, Transportation Research Part C: Emerging Technologies, 110 (2020), 1-19. doi: 10.1016/j.trc.2019.09.023. |
[13] | D. Helbing, A. Hennecke, V. Shvetsov and M. Treiber, Master: Macroscopic traffic simulation based on a gas-kinetic, non-local traffic model, Transportation Research Part B: Methodological, 35 (2001), 183-211. doi: 10.1016/S0191-2615(99)00047-8. |
[14] | H. Holden and N. H. Risebro, Models for dense multilane vehicular traffic, SIAM Journal on Mathematical Analysis, 51 (2019), 3694-3713. doi: 10.1137/19M124318X. |
[15] | D. Jacquet, C. C. De Wit and D. Koenig, Optimal ramp metering strategy with extended lwr model, analysis and computational methods, IFAC Proceedings Volumes, 38 (2005), 99-104. doi: 10.3182/20050703-6-CZ-1902.00877. |
[16] | G. Lipták, M. Pereira, B. Kulcsár, M. Kovács and G. Szederkényi, Traffic reaction model, arXiv preprint, arXiv: 2101.10190, (2021). |
[17] | G. Liu, A. S. Lyrintzis and P. G. Michalopoulos, Modelling of freeway merging and diverging flow dynamics, Applied Mathematical Modelling, 20 (1996), 459-469. doi: 10.1016/0307-904X(95)00165-G. |
[18] | A. Sopasakis and M. A. Katsoulakis, Stochastic modeling and simulation of traffic flow: Asymmetric single exclusion process with arrhenius look-ahead dynamics, SIAM Journal on Applied Mathematics, 66 (2006), 921-944. doi: 10.1137/040617790. |
[19] | J. Sun, Z. Li and J. Sun, Study on traffic characteristics for a typical expressway on-ramp bottleneck considering various merging behaviors, Physica A: Statistical Mechanics and its Applications, 440 (2015), 57-67. doi: 10.1016/j.physa.2015.08.007. |
[20] | T.-Q. Tang, H. J. Huang and H.-Y. Shang, Effects of the number of on-ramps on the ring traffic flow, Chinese Physics B, 19 (2010), 050517. doi: 10.1088/1674-1056/19/5/050517. |
[21] | T.-Q. Tang, H. J. Huang, S. C. Wong, Z.-Y. Gao and Y. Zhang, A new macro model for traffic flow on a highway with ramps and numerical tests, Communications in Theoretical Physics, 51 (2009), 71. doi: 10.1088/0253-6102/51/1/15. |
[22] | T. Wang, J. Zhang, Z. Gao, W. Zhang and S. Li, Congested traffic patterns of two-lane lattice hydrodynamic model with on-ramp, Nonlinear Dynamics, 88 (2017), 1345-1359. doi: 10.1007/s11071-016-3314-z. |
Illustration of the model setting
Example 1. Numerical approximations of the problem (2.1). Dynamic of Model 1 vs. Model 2 at (a)
Example 2. Numerical approximations of the problem (2.1) at
Example 3. Numerical approximation at time
Example 4. Dynamic of the model (2.1). Behavior of the numerical solution computed with Algorithm 3.1 by means of Model 1 and Model 2 at time (a)