In this paper we compare the notion of stochastic two-scale convergence in the mean (by Bourgeat, Mikelić and Wright), the notion of stochastic unfolding (recently introduced by the authors), and the quenched notion of stochastic two-scale convergence (by Zhikov and Pyatnitskii). In particular, we introduce stochastic two-scale Young measures as a tool to compare mean and quenched limits. Moreover, we discuss two examples, which can be naturally analyzed via stochastic unfolding, but which cannot be treated via quenched stochastic two-scale convergence.
Citation: |
[1] |
G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.
doi: 10.1137/0523084.![]() ![]() ![]() |
[2] |
K. T. Andrews and S. Wright, Stochastic homogenization of elliptic boundary-value problems with $L^p$-data, Asymptot. Anal., 17 (1998), 165-184.
![]() ![]() |
[3] |
T. Arbogast, J. Douglas, Jr and U. Hornung, Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal., 21 (1990), 823-836.
doi: 10.1137/0521046.![]() ![]() ![]() |
[4] |
E. J. Balder, A general approach to lower semicontinuity and lower closure in optimal control theory, SIAM J. Control Optim., 22 (1984), 570-598.
doi: 10.1137/0322035.![]() ![]() ![]() |
[5] |
A. Bourgeat, S. Luckhaus and A. Mikelić, A rigorous result for a double porosity model of immiscible two-phase flow, Comptes Rendusa l'Académie des Sciences, 320 (1994), 1289–1294.
![]() |
[6] |
A. Bourgeat, A. Mikelić and S. Wright, Stochastic two-scale convergence in the mean and applications, J. Reine Angew. Math., 456 (1994), 19-51.
![]() ![]() |
[7] |
D. Cioranescu, A. Damlamian and R. De Arcangelis, Homogenization of nonlinear integrals via the periodic unfolding method, C. R. Math., 339 (2004), 77-82.
doi: 10.1016/j.crma.2004.03.028.![]() ![]() ![]() |
[8] |
D. Cioranescu, A. Damlamian, P. Donato, G. Griso and R. Zaki, The periodic unfolding method in domains with holes, SIAM J. Math. Anal., 44 (2012), 718-760.
doi: 10.1137/100817942.![]() ![]() ![]() |
[9] |
D. Cioranescu, A. Damlamian and G. Griso, Periodic unfolding and homogenization, C. R. Math., 335 (2002), 99-104.
doi: 10.1016/S1631-073X(02)02429-9.![]() ![]() ![]() |
[10] |
D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in homogenization, SIAM J. Math. Anal., 40 (2008), 1585-1620.
doi: 10.1137/080713148.![]() ![]() ![]() |
[11] |
G. Dal Maso and L. Modica, Nonlinear stochastic homogenization., Ann. Mat. Pura Appl., 144 (1986), 347-389.
doi: 10.1007/BF01760826.![]() ![]() ![]() |
[12] |
D. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes, Springer Series in Statistics. Springer-Verlag, New York, 1988.
![]() ![]() |
[13] |
J. Fischer and S. Neukamm, Optimal homogenization rates in stochastic homogenization of nonlinear uniformly elliptic equations and systems, Arch. Ration. Mech. Anal., 242 (2021), 343-452.
doi: 10.1007/s00205-021-01686-9.![]() ![]() ![]() |
[14] |
G. Griso, Error estimate and unfolding for periodic homogenization, Asymptot. Anal., 40 (2004), 269-286.
![]() ![]() |
[15] |
H. Hanke, Homogenization in gradient plasticity, Math. Models Methods Appl. Sci., 21 (2011), 1651-1684.
doi: 10.1142/S0218202511005520.![]() ![]() ![]() |
[16] |
M. Heida, An extension of the stochastic two-scale convergence method and application, Asymptot. Anal., 72 (2011), 1-30.
doi: 10.3233/ASY-2010-1022.![]() ![]() ![]() |
[17] |
M. Heida, Stochastic homogenization of rate-independent systems and applications, Contin. Mech. Thermodyn., 29 (2017), 853-894.
doi: 10.1007/s00161-017-0564-z.![]() ![]() ![]() |
[18] |
M. Heida and S. Nesenenko, Stochastic homogenization of rate-dependent models of monotone type in plasticity, Asymptot. Anal., 112 (2019), 185-212.
doi: 10.3233/ASY-181502.![]() ![]() ![]() |
[19] |
M. Heida, S. Neukamm and M. Varga, Stochastic homogenization of $\Lambda$-convex gradient flows, Discrete Contin. Dyn. Syst. Ser. S, 14 (2021), 427-453.
doi: 10.3934/dcdss.2020328.![]() ![]() ![]() |
[20] |
H. Hoppe, Homogenization of Rapidly Oscillating Riemannian Manifolds, Dissertation, TU Dresden, 2020, https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-743766.
![]() |
[21] |
H. Hoppe, S. Neukamm and M. Schäffner, Stochastic homogenization of non-convex integral functionals with degenerate growth, (in preparation), 2021.
![]() |
[22] |
V. V. Jikov, S. M. Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994.
doi: 10.1007/978-3-642-84659-5.![]() ![]() ![]() |
[23] |
S. M. Kozlov, Averaging of random operators, Mat. Sb., 109 (1979), 188-202.
![]() ![]() |
[24] |
M. Liero and S. Reichelt, Homogenization of Cahn–Hilliard-type equations via evolutionary $\Gamma$-convergence, NoDEA Nonlinear Differential Equations Appl., 25 (2018), Paper No. 6, 31 pp.
doi: 10.1007/s00030-018-0495-9.![]() ![]() ![]() |
[25] |
D. Lukkassen, G. Nguetseng and P. Wall, Two-scale convergence, Int. J. Pure Appl. Math., 2 (2002), 35-86.
![]() ![]() |
[26] |
A. Mielke, S. Reichelt and M. Thomas, Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion, Netw. Heterog. Media, 9 (2014), 353-382.
doi: 10.3934/nhm.2014.9.353.![]() ![]() ![]() |
[27] |
A. Mielke and A. M. Timofte, Two-scale homogenization for evolutionary variational inequalities via the energetic formulation, SIAM J. Math. Anal., 39 (2007), 642-668.
doi: 10.1137/060672790.![]() ![]() ![]() |
[28] |
S. Neukamm, Homogenization, linearization and dimension reduction in elasticity with variational methods, Technische Universität München, 2010.
![]() |
[29] |
S. Neukamm, M. Schäffner and A. Schlömerkemper, Stochastic homogenization of nonconvex discrete energies with degenerate growth, SIAM J. Math. Anal., 49 (2017), 1761-1809.
doi: 10.1137/16M1097705.![]() ![]() ![]() |
[30] |
S. Neukamm and M. Varga, Stochastic unfolding and homogenization of spring network models, Multiscale Model. Simul., 16 (2018), 857-899.
doi: 10.1137/17M1141230.![]() ![]() ![]() |
[31] |
S. Neukamm, M. Varga and M. Waurick, Two-scale homogenization of abstract linear time-dependent PDEs, Asymptot. Anal., 125 (2021), 247-287.
![]() ![]() |
[32] |
G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623.
doi: 10.1137/0520043.![]() ![]() ![]() |
[33] |
G. C. Papanicolaou and S. S. Varadhan, Boundary value problems with rapidly oscillating random coefficients, Random Fields, 1 (1979), 835-873.
![]() ![]() |
[34] |
M. Varga, Stochastic Unfolding and Homogenization of Evolutionary Gradient Systems, Dissertation, TU Dresden, 2019, https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-349342.
![]() |
[35] |
A. Visintin, Towards a two-scale calculus, ESAIM Control Optim. Calc. Var., 12 (2006), 371-397.
doi: 10.1051/cocv:2006012.![]() ![]() ![]() |
[36] |
C. Vogt, A homogenization theorem leading to a Volterra-integrodifferential equation for permeation chromotography, Preprint No 155, SFB 123, Heidelberg, 1982.
![]() |
[37] |
V. V. Zhikov, On an extension of the method of two-scale convergence and its applications, Sb. Math., 191 (2000), 973-1014.
doi: 10.1070/SM2000v191n07ABEH000491.![]() ![]() ![]() |
[38] |
V. V. Zhikov and A. Pyatnitskii, Homogenization of random singular structures and random measures, Izv. Math., 70 (2006), 19-67.
doi: 10.1070/IM2006v070n01ABEH002302.![]() ![]() ![]() |