In this paper we compare the notion of stochastic two-scale convergence in the mean (by Bourgeat, Mikelić and Wright), the notion of stochastic unfolding (recently introduced by the authors), and the quenched notion of stochastic two-scale convergence (by Zhikov and Pyatnitskii). In particular, we introduce stochastic two-scale Young measures as a tool to compare mean and quenched limits. Moreover, we discuss two examples, which can be naturally analyzed via stochastic unfolding, but which cannot be treated via quenched stochastic two-scale convergence.
Citation: |
[1] | G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518. doi: 10.1137/0523084. |
[2] | K. T. Andrews and S. Wright, Stochastic homogenization of elliptic boundary-value problems with $L^p$-data, Asymptot. Anal., 17 (1998), 165-184. |
[3] | T. Arbogast, J. Douglas, Jr and U. Hornung, Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal., 21 (1990), 823-836. doi: 10.1137/0521046. |
[4] | E. J. Balder, A general approach to lower semicontinuity and lower closure in optimal control theory, SIAM J. Control Optim., 22 (1984), 570-598. doi: 10.1137/0322035. |
[5] | A. Bourgeat, S. Luckhaus and A. Mikelić, A rigorous result for a double porosity model of immiscible two-phase flow, Comptes Rendusa l'Académie des Sciences, 320 (1994), 1289–1294. |
[6] | A. Bourgeat, A. Mikelić and S. Wright, Stochastic two-scale convergence in the mean and applications, J. Reine Angew. Math., 456 (1994), 19-51. |
[7] | D. Cioranescu, A. Damlamian and R. De Arcangelis, Homogenization of nonlinear integrals via the periodic unfolding method, C. R. Math., 339 (2004), 77-82. doi: 10.1016/j.crma.2004.03.028. |
[8] | D. Cioranescu, A. Damlamian, P. Donato, G. Griso and R. Zaki, The periodic unfolding method in domains with holes, SIAM J. Math. Anal., 44 (2012), 718-760. doi: 10.1137/100817942. |
[9] | D. Cioranescu, A. Damlamian and G. Griso, Periodic unfolding and homogenization, C. R. Math., 335 (2002), 99-104. doi: 10.1016/S1631-073X(02)02429-9. |
[10] | D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in homogenization, SIAM J. Math. Anal., 40 (2008), 1585-1620. doi: 10.1137/080713148. |
[11] | G. Dal Maso and L. Modica, Nonlinear stochastic homogenization., Ann. Mat. Pura Appl., 144 (1986), 347-389. doi: 10.1007/BF01760826. |
[12] | D. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes, Springer Series in Statistics. Springer-Verlag, New York, 1988. |
[13] | J. Fischer and S. Neukamm, Optimal homogenization rates in stochastic homogenization of nonlinear uniformly elliptic equations and systems, Arch. Ration. Mech. Anal., 242 (2021), 343-452. doi: 10.1007/s00205-021-01686-9. |
[14] | G. Griso, Error estimate and unfolding for periodic homogenization, Asymptot. Anal., 40 (2004), 269-286. |
[15] | H. Hanke, Homogenization in gradient plasticity, Math. Models Methods Appl. Sci., 21 (2011), 1651-1684. doi: 10.1142/S0218202511005520. |
[16] | M. Heida, An extension of the stochastic two-scale convergence method and application, Asymptot. Anal., 72 (2011), 1-30. doi: 10.3233/ASY-2010-1022. |
[17] | M. Heida, Stochastic homogenization of rate-independent systems and applications, Contin. Mech. Thermodyn., 29 (2017), 853-894. doi: 10.1007/s00161-017-0564-z. |
[18] | M. Heida and S. Nesenenko, Stochastic homogenization of rate-dependent models of monotone type in plasticity, Asymptot. Anal., 112 (2019), 185-212. doi: 10.3233/ASY-181502. |
[19] | M. Heida, S. Neukamm and M. Varga, Stochastic homogenization of $\Lambda$-convex gradient flows, Discrete Contin. Dyn. Syst. Ser. S, 14 (2021), 427-453. doi: 10.3934/dcdss.2020328. |
[20] | H. Hoppe, Homogenization of Rapidly Oscillating Riemannian Manifolds, Dissertation, TU Dresden, 2020, https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-743766. |
[21] | H. Hoppe, S. Neukamm and M. Schäffner, Stochastic homogenization of non-convex integral functionals with degenerate growth, (in preparation), 2021. |
[22] | V. V. Jikov, S. M. Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994. doi: 10.1007/978-3-642-84659-5. |
[23] | S. M. Kozlov, Averaging of random operators, Mat. Sb., 109 (1979), 188-202. |
[24] | M. Liero and S. Reichelt, Homogenization of Cahn–Hilliard-type equations via evolutionary $\Gamma$-convergence, NoDEA Nonlinear Differential Equations Appl., 25 (2018), Paper No. 6, 31 pp. doi: 10.1007/s00030-018-0495-9. |
[25] | D. Lukkassen, G. Nguetseng and P. Wall, Two-scale convergence, Int. J. Pure Appl. Math., 2 (2002), 35-86. |
[26] | A. Mielke, S. Reichelt and M. Thomas, Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion, Netw. Heterog. Media, 9 (2014), 353-382. doi: 10.3934/nhm.2014.9.353. |
[27] | A. Mielke and A. M. Timofte, Two-scale homogenization for evolutionary variational inequalities via the energetic formulation, SIAM J. Math. Anal., 39 (2007), 642-668. doi: 10.1137/060672790. |
[28] | S. Neukamm, Homogenization, linearization and dimension reduction in elasticity with variational methods, Technische Universität München, 2010. |
[29] | S. Neukamm, M. Schäffner and A. Schlömerkemper, Stochastic homogenization of nonconvex discrete energies with degenerate growth, SIAM J. Math. Anal., 49 (2017), 1761-1809. doi: 10.1137/16M1097705. |
[30] | S. Neukamm and M. Varga, Stochastic unfolding and homogenization of spring network models, Multiscale Model. Simul., 16 (2018), 857-899. doi: 10.1137/17M1141230. |
[31] | S. Neukamm, M. Varga and M. Waurick, Two-scale homogenization of abstract linear time-dependent PDEs, Asymptot. Anal., 125 (2021), 247-287. |
[32] | G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623. doi: 10.1137/0520043. |
[33] | G. C. Papanicolaou and S. S. Varadhan, Boundary value problems with rapidly oscillating random coefficients, Random Fields, 1 (1979), 835-873. |
[34] | M. Varga, Stochastic Unfolding and Homogenization of Evolutionary Gradient Systems, Dissertation, TU Dresden, 2019, https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-349342. |
[35] | A. Visintin, Towards a two-scale calculus, ESAIM Control Optim. Calc. Var., 12 (2006), 371-397. doi: 10.1051/cocv:2006012. |
[36] | C. Vogt, A homogenization theorem leading to a Volterra-integrodifferential equation for permeation chromotography, Preprint No 155, SFB 123, Heidelberg, 1982. |
[37] | V. V. Zhikov, On an extension of the method of two-scale convergence and its applications, Sb. Math., 191 (2000), 973-1014. doi: 10.1070/SM2000v191n07ABEH000491. |
[38] | V. V. Zhikov and A. Pyatnitskii, Homogenization of random singular structures and random measures, Izv. Math., 70 (2006), 19-67. doi: 10.1070/IM2006v070n01ABEH002302. |