• Previous Article
    Bi-fidelity stochastic collocation methods for epidemic transport models with uncertainties
  • NHM Home
  • This Issue
  • Next Article
    A study of computational and conceptual complexities of compartment and agent based models
June  2022, 17(3): 385-400. doi: 10.3934/nhm.2022012

Vaccination strategies through intra—compartmental dynamics

1. 

INdAM Unit and Department of Information Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy

2. 

Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Via Amendola, 2, 42122 Reggio Emilia, Italy

Received  April 2021 Revised  July 2021 Published  June 2022 Early access  March 2022

Fund Project: The authors were partly supported by the GNAMPA 2020 project "From Wellposedness to Game Theory in Conservation Laws". The IBM Power Systems Academic Initiative contributed to numerical integrations

We present a new epidemic model highlighting the roles of the immunization time and concurrent use of different vaccines in a vaccination campaign. To this aim, we introduce new intra-compartmental dynamics, a procedure that can be extended to various other situations, as detailed through specific case studies considered herein, where the dynamics within compartments are present and influence the whole evolution.

Citation: Rinaldo M. Colombo, Francesca Marcellini, Elena Rossi. Vaccination strategies through intra—compartmental dynamics. Networks and Heterogeneous Media, 2022, 17 (3) : 385-400. doi: 10.3934/nhm.2022012
References:
[1]

J. L. Aron, Mathematical modeling of immunity to malaria. Nonlinearity in biology and medicine, Math. Biosci., 90 (1988), 385-396.  doi: 10.1016/0025-5564(88)90076-4.

[2]

N. BellomoR. BinghamM. A. J. ChaplainG. DosiG. Forni and et al., A multiscale model of virus pandemic: Heterogeneous interactive entities in a globally connected world, Math. Models Methods Appl. Sci., 30 (2020), 1591-1651.  doi: 10.1142/S0218202520500323.

[3]

F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, 2$^{nd}$ edition, Texts in Applied Mathematics, 40, Springer, New York, 2012. doi: 10.1007/978-1-4614-1686-9.

[4]

F. Brauer and P. van den Driessche, Models for transmission of disease with immigration of infectives, Math. Biosci., 171 (2001), 143-154.  doi: 10.1016/S0025-5564(01)00057-8.

[5]

R. M. Colombo and M. Garavello, Well posedness and control in a nonlocal SIR model, Appl. Math. Optim., 84 (2021), 737-771.  doi: 10.1007/s00245-020-09660-9.

[6]

R. M. Colombo, M. Garavello, F. Marcellini and E. Rossi, An age and space structured SIR model describing the Covid-19 pandemic, J. Math. Ind., 10 (2020), 20pp. doi: 10.1186/s13362-020-00090-4.

[7]

R. M. Colombo, M. Garavello, F. Marcellini and E. Rossi, IBVPs for inhomogeneous systems of balance laws in several space dimensions motivated by biology and epidemiology, preprint, 2021.

[8]

G. Dimarco, L. Pareschi, G. Toscani and M. Zanella, Wealth distribution under the spread of infectious diseases, Phys. Rev. E, 102 (2020), 14pp. doi: 10.1103/physreve.102.022303.

[9]

A. d'OnofrioP. Manfredi and E. Salinelli, Bifurcation thresholds in an SIR model with information-dependent vaccination, Math. Model. Nat. Phenom., 2 (2007), 23-38.  doi: 10.1051/mmnp:2008009.

[10]

S. Ghosh and S. Bhattacharya, A data-driven understanding of COVID-19 dynamics using sequential genetic algorithm based probabilistic cellular automata, Appl. Soft Comput., 96 (2020). doi: 10.1016/j.asoc.2020.106692.

[11]

G. GiordanoF. BlanchiniR. BrunoP. ColaneriA. Di FilippoA. Di Matteo and M. Colaneri, Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy, Nature Medicine, 26 (2020), 855-860.  doi: 10.1038/s41591-020-0883-7.

[12]

A. Godio, F. Pace and A. Vergnano, SEIR modeling of the Italian epidemic of SARS-CoV-2 using computational swarm intelligence, Internat. J. Environ. Res. Public Health, 17 (2020). doi: 10.3390/ijerph17103535.

[13]

D. Greenhalgh, Some results for an SEIR epidemic model with density dependence in the death rate, IMA J. Math. Appl. Med. Biol., 9 (1992), 67-106.  doi: 10.1093/imammb/9.2.67.

[14]

H. Inaba, Age-structured SIR epidemic model, in Age-Structured Population Dynamics in Demography and Epidemiology, Springer, 2017,287–331.

[15]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics. II. The problem of endemicity, Proc. Roy. Soc. Lond. A, 138 (1932), 55-83.  doi: 10.1098/rspa.1932.0171.

[16]

W. O. KermackA. G. McKendrick and G. T. Walker, A contribution to the mathematical theory of epidemics, Proc. Roy. Soc. Lond. A, 115 (1927), 700-721.  doi: 10.1098/rspa.1927.0118.

[17]

C. M. Kribs-Zaleta and J. X. Velasco-Hernández, A simple vaccination model with multiple endemic states, Math. Biosci., 164 (2000), 183-201.  doi: 10.1016/S0025-5564(00)00003-1.

[18]

G. Li and Z. Jin, Global stability of a SEIR epidemic model with infectious force in latent, infected and immune period, Chaos Solitons Fractals, 25 (2005), 1177-1184.  doi: 10.1016/j.chaos.2004.11.062.

[19]

M. Y. LiH. L. Smith and L. Wang, Global dynamics an SEIR epidemic model with vertical transmission, SIAM J. Appl. Math., 62 (2001), 58-69.  doi: 10.1137/S0036139999359860.

[20]

X. LiuY. Takeuchi and S. Iwami, SVIR epidemic models with vaccination strategies, J. Theoret. Biol., 253 (2008), 1-11.  doi: 10.1016/j.jtbi.2007.10.014.

[21]

J. Mena-Lorca and H. W. Hethcote, Dynamic models of infectious diseases as regulators of population sizes, J. Math. Biol., 30 (1992), 693-716.  doi: 10.1007/BF00173264.

[22]

J. D. Murray, Mathematical Biology. I. An Introduction, 3$^{rd}$ edition, Interdisciplinary Applied Mathematics, 17, Springer-Verlag, New York, 2002. doi: 10.1007/b98868.

[23]

B. Perthame, Transport Equations in Biology, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2007. doi: 10.1007/978-3-7643-7842-4.

[24]

C. Piazzola, L. Tamellini and R. Tempone, A note on tools for prediction under uncertainty and identifiability of SIR-like dynamical systems for epidemiology, Math. Biosci., 332 (2021), 21pp. doi: 10.1016/j.mbs.2020.108514.

[25]

H. R. Thieme, Epidemic and demographic interaction in the spread of potentially fatal diseases in growing populations, Math. Biosci., 111 (1992), 99-130.  doi: 10.1016/0025-5564(92)90081-7.

[26]

H. Wackerhage, R. Everett, K. Krüger, M. Murgia and P. Simon, et al., Sport, exercise and COVID-19, the disease caused by the SARS-CoV-2 coronavirus, Dtsch. Z. Sportmed., 71 (2020), E1–E12. doi: 10.5960/dzsm.2020.441.

[27]

P. Yarsky, Using a genetic algorithm to fit parameters of a COVID-19 SEIR model for US states, Math. Comput. Simulation, 185 (2021), 687-695.  doi: 10.1016/j.matcom.2021.01.022.

show all references

References:
[1]

J. L. Aron, Mathematical modeling of immunity to malaria. Nonlinearity in biology and medicine, Math. Biosci., 90 (1988), 385-396.  doi: 10.1016/0025-5564(88)90076-4.

[2]

N. BellomoR. BinghamM. A. J. ChaplainG. DosiG. Forni and et al., A multiscale model of virus pandemic: Heterogeneous interactive entities in a globally connected world, Math. Models Methods Appl. Sci., 30 (2020), 1591-1651.  doi: 10.1142/S0218202520500323.

[3]

F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, 2$^{nd}$ edition, Texts in Applied Mathematics, 40, Springer, New York, 2012. doi: 10.1007/978-1-4614-1686-9.

[4]

F. Brauer and P. van den Driessche, Models for transmission of disease with immigration of infectives, Math. Biosci., 171 (2001), 143-154.  doi: 10.1016/S0025-5564(01)00057-8.

[5]

R. M. Colombo and M. Garavello, Well posedness and control in a nonlocal SIR model, Appl. Math. Optim., 84 (2021), 737-771.  doi: 10.1007/s00245-020-09660-9.

[6]

R. M. Colombo, M. Garavello, F. Marcellini and E. Rossi, An age and space structured SIR model describing the Covid-19 pandemic, J. Math. Ind., 10 (2020), 20pp. doi: 10.1186/s13362-020-00090-4.

[7]

R. M. Colombo, M. Garavello, F. Marcellini and E. Rossi, IBVPs for inhomogeneous systems of balance laws in several space dimensions motivated by biology and epidemiology, preprint, 2021.

[8]

G. Dimarco, L. Pareschi, G. Toscani and M. Zanella, Wealth distribution under the spread of infectious diseases, Phys. Rev. E, 102 (2020), 14pp. doi: 10.1103/physreve.102.022303.

[9]

A. d'OnofrioP. Manfredi and E. Salinelli, Bifurcation thresholds in an SIR model with information-dependent vaccination, Math. Model. Nat. Phenom., 2 (2007), 23-38.  doi: 10.1051/mmnp:2008009.

[10]

S. Ghosh and S. Bhattacharya, A data-driven understanding of COVID-19 dynamics using sequential genetic algorithm based probabilistic cellular automata, Appl. Soft Comput., 96 (2020). doi: 10.1016/j.asoc.2020.106692.

[11]

G. GiordanoF. BlanchiniR. BrunoP. ColaneriA. Di FilippoA. Di Matteo and M. Colaneri, Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy, Nature Medicine, 26 (2020), 855-860.  doi: 10.1038/s41591-020-0883-7.

[12]

A. Godio, F. Pace and A. Vergnano, SEIR modeling of the Italian epidemic of SARS-CoV-2 using computational swarm intelligence, Internat. J. Environ. Res. Public Health, 17 (2020). doi: 10.3390/ijerph17103535.

[13]

D. Greenhalgh, Some results for an SEIR epidemic model with density dependence in the death rate, IMA J. Math. Appl. Med. Biol., 9 (1992), 67-106.  doi: 10.1093/imammb/9.2.67.

[14]

H. Inaba, Age-structured SIR epidemic model, in Age-Structured Population Dynamics in Demography and Epidemiology, Springer, 2017,287–331.

[15]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics. II. The problem of endemicity, Proc. Roy. Soc. Lond. A, 138 (1932), 55-83.  doi: 10.1098/rspa.1932.0171.

[16]

W. O. KermackA. G. McKendrick and G. T. Walker, A contribution to the mathematical theory of epidemics, Proc. Roy. Soc. Lond. A, 115 (1927), 700-721.  doi: 10.1098/rspa.1927.0118.

[17]

C. M. Kribs-Zaleta and J. X. Velasco-Hernández, A simple vaccination model with multiple endemic states, Math. Biosci., 164 (2000), 183-201.  doi: 10.1016/S0025-5564(00)00003-1.

[18]

G. Li and Z. Jin, Global stability of a SEIR epidemic model with infectious force in latent, infected and immune period, Chaos Solitons Fractals, 25 (2005), 1177-1184.  doi: 10.1016/j.chaos.2004.11.062.

[19]

M. Y. LiH. L. Smith and L. Wang, Global dynamics an SEIR epidemic model with vertical transmission, SIAM J. Appl. Math., 62 (2001), 58-69.  doi: 10.1137/S0036139999359860.

[20]

X. LiuY. Takeuchi and S. Iwami, SVIR epidemic models with vaccination strategies, J. Theoret. Biol., 253 (2008), 1-11.  doi: 10.1016/j.jtbi.2007.10.014.

[21]

J. Mena-Lorca and H. W. Hethcote, Dynamic models of infectious diseases as regulators of population sizes, J. Math. Biol., 30 (1992), 693-716.  doi: 10.1007/BF00173264.

[22]

J. D. Murray, Mathematical Biology. I. An Introduction, 3$^{rd}$ edition, Interdisciplinary Applied Mathematics, 17, Springer-Verlag, New York, 2002. doi: 10.1007/b98868.

[23]

B. Perthame, Transport Equations in Biology, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2007. doi: 10.1007/978-3-7643-7842-4.

[24]

C. Piazzola, L. Tamellini and R. Tempone, A note on tools for prediction under uncertainty and identifiability of SIR-like dynamical systems for epidemiology, Math. Biosci., 332 (2021), 21pp. doi: 10.1016/j.mbs.2020.108514.

[25]

H. R. Thieme, Epidemic and demographic interaction in the spread of potentially fatal diseases in growing populations, Math. Biosci., 111 (1992), 99-130.  doi: 10.1016/0025-5564(92)90081-7.

[26]

H. Wackerhage, R. Everett, K. Krüger, M. Murgia and P. Simon, et al., Sport, exercise and COVID-19, the disease caused by the SARS-CoV-2 coronavirus, Dtsch. Z. Sportmed., 71 (2020), E1–E12. doi: 10.5960/dzsm.2020.441.

[27]

P. Yarsky, Using a genetic algorithm to fit parameters of a COVID-19 SEIR model for US states, Math. Comput. Simulation, 185 (2021), 687-695.  doi: 10.1016/j.matcom.2021.01.022.

Figure 1.  Solutions to (3)–(7)–(8) in the $ 4 $ cases $ T_* = 7, \, 21, \, 35, \, 49 $
Figure 2.  Diagrams of the solutions to (3)–(7)–(8) with a suspension in the vaccination campaign as detailed in (9) in the $ 4 $ cases $ T_* = 7, \, 21, \, 35, \, 49 $
Figure 3.  Diagrams of the solutions to (4)–(7)–(8)–(10). On the left with $ \omega = 0.1 $ and, on the right, with $ \omega = 0.4 $
Figure 4.  Above, the integrations of (1) and (15), below on the left that of (16) (19). The rightmost diagram on the second line displays the total number of living individuals in the three cases, showing that, with respect to mortality, the ODE–PDE model (16) can be seen in some senses in the middle between the ODE models (1) and (15)
Figure 5.  Above, from left to right, the integrations of Case $ (i) $, Case $ (ii) $ and Case $ (iii) $ in (20) with parameters and data as prescribed in (19). Below, the corresponding choices of the $ \rho $ function as detailed in (20). The differences in the displayed evolutions are due to the intra–compartmental dynamics in the $ I $ population
Table 1.  Times necessary for the vaccination to provide immunity and corresponding casualties according to model (3)–(7)–(8). The initial total population is $ 100 $
$ T_* $ (days) 1 7 14 21 28 35 42 49
Deaths: 0.28 0.32 0.37 0.43 0.49 0.56 0.63 0.70
$ T_* $ (days) 1 7 14 21 28 35 42 49
Deaths: 0.28 0.32 0.37 0.43 0.49 0.56 0.63 0.70
Table 2.  Times necessary for the vaccination to provide immunity and corresponding casualties, according to model (3)–(7)–(8), in the case vaccinations are suspended as detailed in (9). The initial total population is $ 100 $
$ T_* $ 1 7 14 21 28 35 42 49
Deaths: 1.11 1.18 1.25 1.32 1.38 1.43 1.48 1.53
$ T_* $ 1 7 14 21 28 35 42 49
Deaths: 1.11 1.18 1.25 1.32 1.38 1.43 1.48 1.53
Table 3.  Populations in model (21) from [11]
$ S $ Susceptible healthy can be infected
$ I $ Infected asymptomatic infective undetected
$ D $ Diagnosed asymptomatic infective detected
$ A $ Ailing symptomatic infective undetected
$ R $ Recognized symptomatic infective detected
$ T $ Threatened acutely symptomatic infected detected
$ H $ Healed healthy immune
$ E $ Extinct
$ S $ Susceptible healthy can be infected
$ I $ Infected asymptomatic infective undetected
$ D $ Diagnosed asymptomatic infective detected
$ A $ Ailing symptomatic infective undetected
$ R $ Recognized symptomatic infective detected
$ T $ Threatened acutely symptomatic infected detected
$ H $ Healed healthy immune
$ E $ Extinct
[1]

Haitao Song, Fang Liu, Feng Li, Xiaochun Cao, Hao Wang, Zhongwei Jia, Huaiping Zhu, Michael Y. Li, Wei Lin, Hong Yang, Jianghong Hu, Zhen Jin. Modeling the second outbreak of COVID-19 with isolation and contact tracing. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021294

[2]

Qi Luo, Ryan Weightman, Sean T. McQuade, Mateo Díaz, Emmanuel Trélat, William Barbour, Dan Work, Samitha Samaranayake, Benedetto Piccoli. Optimization of vaccination for COVID-19 in the midst of a pandemic. Networks and Heterogeneous Media, 2022, 17 (3) : 443-466. doi: 10.3934/nhm.2022016

[3]

Nicola Bellomo, Diletta Burini, Nisrine Outada. Multiscale models of Covid-19 with mutations and variants. Networks and Heterogeneous Media, 2022, 17 (3) : 293-310. doi: 10.3934/nhm.2022008

[4]

Xia Li, Chuntian Wang, Hao Li, Andrea L. Bertozzi. A martingale formulation for stochastic compartmental susceptible-infected-recovered (SIR) models to analyze finite size effects in COVID-19 case studies. Networks and Heterogeneous Media, 2022, 17 (3) : 311-331. doi: 10.3934/nhm.2022009

[5]

Jorge Rebaza. On a model of COVID-19 dynamics. Electronic Research Archive, 2021, 29 (2) : 2129-2140. doi: 10.3934/era.2020108

[6]

Tailei Zhang, Zhimin Li. Analysis of COVID-19 epidemic transmission trend based on a time-delayed dynamic model. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021088

[7]

Tao Zheng, Yantao Luo, Xinran Zhou, Long Zhang, Zhidong Teng. Spatial dynamic analysis for COVID-19 epidemic model with diffusion and Beddington-DeAngelis type incidence. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021154

[8]

Hailiang Liu, Xuping Tian. Data-driven optimal control of a seir model for COVID-19. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021093

[9]

Emiliano Alvarez, Juan Gabriel Brida, Lucía Rosich, Erick Limas. Analysis of communities of countries with similar dynamics of the COVID-19 pandemic evolution. Journal of Dynamics and Games, 2022, 9 (1) : 75-96. doi: 10.3934/jdg.2021026

[10]

Gabriel Illanes, Ernesto Mordecki, Andrés Sosa. On the impact of the Covid-19 health crisis on GDP forecasting: An empirical approach. Journal of Dynamics and Games, 2022  doi: 10.3934/jdg.2022008

[11]

Monique Chyba, Rinaldo M. Colombo, Mauro Garavello, Benedetto Piccoli. Advanced mathematical methodologies to contrast COVID-19 pandemic. Networks and Heterogeneous Media, 2022, 17 (3) : i-ii. doi: 10.3934/nhm.2022020

[12]

Nitu Kumari, Sumit Kumar, Sandeep Sharma, Fateh Singh, Rana Parshad. Basic reproduction number estimation and forecasting of COVID-19: A case study of India, Brazil and Peru. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021170

[13]

Yanfei Zhao, Yepeng Xing. A delayed dynamical model for COVID-19 therapy with defective interfering particles and artificial antibodies. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021278

[14]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics and Games, 2021, 8 (3) : 167-186. doi: 10.3934/jdg.2021004

[15]

Kaitlin Riegel, Tanya Evans. Predicting how a disrupted semester during the COVID-19 pandemic impacted student learning. STEM Education, 2022, 2 (2) : 140-156. doi: 10.3934/steme.2022010

[16]

Yongtao Peng, Dan Xu, Eleonora Veglianti, Elisabetta Magnaghi. A product service supply chain network equilibrium considering risk management in the context of COVID-19 pandemic. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022094

[17]

Amin Reza Kalantari Khalil Abad, Farnaz Barzinpour, Seyed Hamid Reza Pasandideh. A novel separate chance-constrained programming model to design a sustainable medical ventilator supply chain network during the Covid-19 pandemic. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2021234

[18]

Eunha Shim. A note on epidemic models with infective immigrants and vaccination. Mathematical Biosciences & Engineering, 2006, 3 (3) : 557-566. doi: 10.3934/mbe.2006.3.557

[19]

Chloe A. Fletcher, Jason S. Howell. Dynamic modeling of nontargeted and targeted advertising strategies in an oligopoly. Journal of Dynamics and Games, 2017, 4 (2) : 97-124. doi: 10.3934/jdg.2017007

[20]

Stéphane Junca, Bruno Lombard. Stability of neutral delay differential equations modeling wave propagation in cracked media. Conference Publications, 2015, 2015 (special) : 678-685. doi: 10.3934/proc.2015.0678

2021 Impact Factor: 1.41

Metrics

  • PDF downloads (175)
  • HTML views (108)
  • Cited by (0)

[Back to Top]