We consider a homogenization problem for the diffusion equation $ -\operatorname{div}\left(a_{\varepsilon} \nabla u_{\varepsilon} \right) = f $ when the coefficient $ a_{\varepsilon} $ is a non-local perturbation of a periodic coefficient. The perturbation does not vanish but becomes rare at infinity in a sense made precise in the text. We prove the existence of a corrector, identify the homogenized limit and study the convergence rates of $ u_{\varepsilon} $ to its homogenized limit.
Citation: |
[1] | G. Allaire, Homogenization and two-scale convergence, SIAM Journal on Mathematical Analysis, 23 (1992), 1482-1518. doi: 10.1137/0523084. |
[2] | M. Avellaneda and F.-H. Lin, Compactness methods in the theory of homogenization, Communications on Pure and Applied Mathematics, 40 (1987), 803-847. doi: 10.1002/cpa.3160400607. |
[3] | M. Avellaneda and F.-H. Lin, Compactness methods in the theory of homogenization II: Equations in non-divergence form, Communications on Pure and Applied Mathematics, 42 (1989), 139-172. doi: 10.1002/cpa.3160420203. |
[4] | M. Avellaneda and F.-H. Lin, $L^p$ bounds on singular integrals in homogenization, Communications on Pure and Applied Mathematics, 44 (1991), 897-910. doi: 10.1002/cpa.3160440805. |
[5] | A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, Studies in Mathematics and its Applications, 5. North-Holland Publishing Co., Amsterdam-New York, 1978. |
[6] | X. Blanc, M. Josien and C. Le Bris, Precised approximations in elliptic homogenization beyond the periodic setting, Asymptotic Analysis, 116 (2020), 93-137. doi: 10.3233/ASY-191537. |
[7] | X. Blanc, C. Le Bris and P.-L. Lions, On correctors for linear elliptic homogenization in the presence of local defects: The case of advection-diffusion, Journal de Mathématiques Pures et Appliquées, 124 (2019), 106–122. doi: 10.1016/j.matpur.2018.04.010. |
[8] | X. Blanc, C. Le Bris and P.-L. Lions, On correctors for linear elliptic homogenization in the presence of local defects, Communications in Partial Differential Equations, 43 (2018), 965-997. doi: 10.1080/03605302.2018.1484764. |
[9] | X. Blanc, C. Le Bris and P.-L. Lions, Local profiles for elliptic problems at different scales: Defects in, and interfaces between periodic structures, Communications in Partial Differential Equations, 40 (2015), 2173-2236. doi: 10.1080/03605302.2015.1043464. |
[10] | X. Blanc, C. Le Bris and P.-L. Lions, A possible homogenization approach for the numerical simulation of periodic microstructures with defects, Milan Journal of Mathematics, 80 (2012), 351-367. doi: 10.1007/s00032-012-0186-7. |
[11] | X. Blanc, F. Legoll and A. Anantharaman, Asymptotic behaviour of Green functions of divergence form operators with periodic coefficients, Applied Mathematics Research Express, 2013 (2013), 79-101. doi: 10.1093/amrx/abs013. |
[12] | J. Deny and J.-L. Lions, Les espaces du type de Beppo Levi, Annales de l'institut Fourier, 5 (1954), 305-370. doi: 10.5802/aif.55. |
[13] | L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998. |
[14] | M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton University Press, 1983. |
[15] | M. Giaquinta and L. Martinazzi, An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs, Edizioni Della Normale, Pisa, 2012. doi: 10.1007/978-88-7642-443-4. |
[16] | R. Goudey, A periodic homogenization problem with defects rare at infinity, preprint, arXiv: 2109.05506. |
[17] | R. Goudey, PhD Thesis, in preparation. |
[18] | M. Gruter and K.-O. Widman, The Green function for uniformly elliptic equations, Manuscripta Mathematica, 37 (1982), 303-342. doi: 10.1007/BF01166225. |
[19] | V. V. Jikov, S. M Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994. doi: 10.1007/978-3-642-84659-5. |
[20] | P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Parts 1 & 2, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 1 (1984), 109–145 and 223–283. doi: 10.1016/s0294-1449(16)30422-x. |
[21] | L. Tartar, The General Theory of Homogenization: A Personalized Introduction, Springer, Berlin Heidelberger, 2009. doi: 10.1007/978-3-642-05195-1. |
Prototype perturbation in dimension
Example of points in ambient dimension 2 that satisfy our assumptions along with their associated Voronoi diagram
Example for the choice of the open subset