doi: 10.3934/nhm.2022019
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

An atomistic derivation of von-Kármán plate theory

1. 

Heriot-Watt University, United Kingdom

2. 

Universität Augsburg, Germany

*Corresponding author: Julian Braun

Received  July 2021 Revised  February 2022 Early access April 2022

We derive von-Kármán plate theory from three dimensional, purely atomistic models with classical particle interaction. This derivation is established as a $ \Gamma $-limit when considering the limit where the interatomic distance $ \varepsilon $ as well as the thickness of the plate $ h $ tend to zero. In particular, our analysis includes the ultrathin case where $ \varepsilon \sim h $, leading to a new von-Kármán plate theory for finitely many layers.

Citation: Julian Braun, Bernd Schmidt. An atomistic derivation of von-Kármán plate theory. Networks and Heterogeneous Media, doi: 10.3934/nhm.2022019
References:
[1]

R. Alicandro and M. Cicalese, A general integral representation result for continuum limits of discrete energies with superlinear growth, SIAM J. Math. Anal., 36 (2004), 1-37.  doi: 10.1137/S0036141003426471.

[2]

S. Bartels, Numerical solution of a Föppl–von Kármán model, SIAM J. Numer. Anal., 55 (2017), 1505-1524.  doi: 10.1137/16M1069791.

[3]

X. BlancC. Le Bris and P.-L. Lions, From molecular models to continuum mechanics, Arch. Ration. Mech. Anal., 164 (2002), 341-381.  doi: 10.1007/s00205-002-0218-5.

[4]

J. Braun, Connecting atomistic and continuous models of elastodynamics, Arch. Ration. Mech. Anal., 224 (2017), 907-953.  doi: 10.1007/s00205-017-1091-6.

[5]

J. Braun and B. Schmidt, Existence and convergence of solutions of the boundary value problem in atomistic and continuum nonlinear elasticity theory, Calc. Var. Partial Differential Equations, 55 (2016), 36pp. doi: 10.1007/s00526-016-1048-x.

[6]

J. Braun and B. Schmidt, On the passage from atomistic systems to nonlinear elasticity theory for general multi-body potentials with $p$-growth, Netw. Heterog. Media, 8 (2013), 879-912.  doi: 10.3934/nhm.2013.8.879.

[7]

S. Conti and F. Maggi, Confining thin elastic sheets and folding paper, Arch. Ration. Mech. Anal., 187 (2008), 1-48.  doi: 10.1007/s00205-007-0076-2.

[8]

M. de Benito Delgado and B. Schmidt, Energy minimizing configurations of pre-strained multilayers, J. Elasticity, 140 (2020), 303-335.  doi: 10.1007/s10659-020-09771-y.

[9]

M. de Benito Delgado and B. Schmidt, A hierarchy of multilayered plate models, ESAIM Control Optim. Calc. Var., 27 (2021), 35pp. doi: 10.1051/cocv/2020067.

[10]

W. E and P. Ming, Cauchy-Born rule and the stability of crystalline solids: Static problems, Arch. Ration. Mech. Anal., 183 (2007), 241-297.  doi: 10.1007/s00205-006-0031-7.

[11]

G. Friesecke and R. D. James, A scheme for the passage from atomic to continuum theory for thin films, nanotubes and nanorods, J. Mech. Phys. Solids, 48 (2000), 1519-1540.  doi: 10.1016/S0022-5096(99)00091-5.

[12]

G. FrieseckeR. D. James and S. Müller, The Föppl-von Kármán plate theory as a low energy Γ-limit of nonlinear elasticity, C. R. Math. Acad. Sci. Paris, 335 (2002), 201-206.  doi: 10.1016/S1631-073X(02)02388-9.

[13]

G. FrieseckeR. D. James and S. Müller, A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence, Arch. Ration. Mech. Anal., 180 (2006), 183-236.  doi: 10.1007/s00205-005-0400-7.

[14]

G. FrieseckeR. D. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math., 55 (2002), 1461-1506.  doi: 10.1002/cpa.10048.

[15]

H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl. (9), 74 (1995), 549-578. 

[16]

H. Olbermann and E. Runa, Interpenetration of matter in plate theories obtained as Γ-limits, ESAIM Control Optim. Calc. Var., 23 (2017), 119-136.  doi: 10.1051/cocv/2015042.

[17]

C. Ortner and F. Theil, Justification of the Cauchy-Born approximation of elastodynamics, Arch. Ration. Mech. Anal., 207 (2013), 1025-1073.  doi: 10.1007/s00205-012-0592-6.

[18]

B. Schmidt, A derivation of continuum nonlinear plate theory from atomistic models, Multiscale Model. Simul., 5 (2006), 664-694.  doi: 10.1137/050646251.

[19]

B. Schmidt, On the derivation of linear elasticity from atomistic models, Netw. Heterog. Media, 4 (2009), 789-812.  doi: 10.3934/nhm.2009.4.789.

[20]

B. Schmidt, On the passage from atomic to continuum theory for thin films, Arch. Ration. Mech. Anal., 190 (2008), 1-55.  doi: 10.1007/s00205-008-0138-0.

[21]

B. Schmidt, Qualitative properties of a continuum theory for thin films, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 25 (2008), 43-75.  doi: 10.1016/j.anihpc.2006.09.001.

show all references

References:
[1]

R. Alicandro and M. Cicalese, A general integral representation result for continuum limits of discrete energies with superlinear growth, SIAM J. Math. Anal., 36 (2004), 1-37.  doi: 10.1137/S0036141003426471.

[2]

S. Bartels, Numerical solution of a Föppl–von Kármán model, SIAM J. Numer. Anal., 55 (2017), 1505-1524.  doi: 10.1137/16M1069791.

[3]

X. BlancC. Le Bris and P.-L. Lions, From molecular models to continuum mechanics, Arch. Ration. Mech. Anal., 164 (2002), 341-381.  doi: 10.1007/s00205-002-0218-5.

[4]

J. Braun, Connecting atomistic and continuous models of elastodynamics, Arch. Ration. Mech. Anal., 224 (2017), 907-953.  doi: 10.1007/s00205-017-1091-6.

[5]

J. Braun and B. Schmidt, Existence and convergence of solutions of the boundary value problem in atomistic and continuum nonlinear elasticity theory, Calc. Var. Partial Differential Equations, 55 (2016), 36pp. doi: 10.1007/s00526-016-1048-x.

[6]

J. Braun and B. Schmidt, On the passage from atomistic systems to nonlinear elasticity theory for general multi-body potentials with $p$-growth, Netw. Heterog. Media, 8 (2013), 879-912.  doi: 10.3934/nhm.2013.8.879.

[7]

S. Conti and F. Maggi, Confining thin elastic sheets and folding paper, Arch. Ration. Mech. Anal., 187 (2008), 1-48.  doi: 10.1007/s00205-007-0076-2.

[8]

M. de Benito Delgado and B. Schmidt, Energy minimizing configurations of pre-strained multilayers, J. Elasticity, 140 (2020), 303-335.  doi: 10.1007/s10659-020-09771-y.

[9]

M. de Benito Delgado and B. Schmidt, A hierarchy of multilayered plate models, ESAIM Control Optim. Calc. Var., 27 (2021), 35pp. doi: 10.1051/cocv/2020067.

[10]

W. E and P. Ming, Cauchy-Born rule and the stability of crystalline solids: Static problems, Arch. Ration. Mech. Anal., 183 (2007), 241-297.  doi: 10.1007/s00205-006-0031-7.

[11]

G. Friesecke and R. D. James, A scheme for the passage from atomic to continuum theory for thin films, nanotubes and nanorods, J. Mech. Phys. Solids, 48 (2000), 1519-1540.  doi: 10.1016/S0022-5096(99)00091-5.

[12]

G. FrieseckeR. D. James and S. Müller, The Föppl-von Kármán plate theory as a low energy Γ-limit of nonlinear elasticity, C. R. Math. Acad. Sci. Paris, 335 (2002), 201-206.  doi: 10.1016/S1631-073X(02)02388-9.

[13]

G. FrieseckeR. D. James and S. Müller, A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence, Arch. Ration. Mech. Anal., 180 (2006), 183-236.  doi: 10.1007/s00205-005-0400-7.

[14]

G. FrieseckeR. D. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math., 55 (2002), 1461-1506.  doi: 10.1002/cpa.10048.

[15]

H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl. (9), 74 (1995), 549-578. 

[16]

H. Olbermann and E. Runa, Interpenetration of matter in plate theories obtained as Γ-limits, ESAIM Control Optim. Calc. Var., 23 (2017), 119-136.  doi: 10.1051/cocv/2015042.

[17]

C. Ortner and F. Theil, Justification of the Cauchy-Born approximation of elastodynamics, Arch. Ration. Mech. Anal., 207 (2013), 1025-1073.  doi: 10.1007/s00205-012-0592-6.

[18]

B. Schmidt, A derivation of continuum nonlinear plate theory from atomistic models, Multiscale Model. Simul., 5 (2006), 664-694.  doi: 10.1137/050646251.

[19]

B. Schmidt, On the derivation of linear elasticity from atomistic models, Netw. Heterog. Media, 4 (2009), 789-812.  doi: 10.3934/nhm.2009.4.789.

[20]

B. Schmidt, On the passage from atomic to continuum theory for thin films, Arch. Ration. Mech. Anal., 190 (2008), 1-55.  doi: 10.1007/s00205-008-0138-0.

[21]

B. Schmidt, Qualitative properties of a continuum theory for thin films, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 25 (2008), 43-75.  doi: 10.1016/j.anihpc.2006.09.001.

[1]

Marta Lewicka, Hui Li. Convergence of equilibria for incompressible elastic plates in the von Kármán regime. Communications on Pure and Applied Analysis, 2015, 14 (1) : 143-166. doi: 10.3934/cpaa.2015.14.143

[2]

Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322

[3]

Ammar Khemmoudj, Yacine Mokhtari. General decay of the solution to a nonlinear viscoelastic modified von-Kármán system with delay. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3839-3866. doi: 10.3934/dcds.2019155

[4]

Catherine Lebiedzik. Uniform stability in a vectorial full Von Kármán thermoelastic system with solenoidal dissipation and free boundary conditions. Evolution Equations and Control Theory, 2021, 10 (4) : 767-796. doi: 10.3934/eect.2020092

[5]

Sylvia Serfaty. Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1427-1451. doi: 10.3934/dcds.2011.31.1427

[6]

Martin Kružík, Ulisse Stefanelli, Chiara Zanini. Quasistatic evolution of magnetoelastic plates via dimension reduction. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5999-6013. doi: 10.3934/dcds.2015.35.5999

[7]

L. Búa, T. Mestdag, M. Salgado. Symmetry reduction, integrability and reconstruction in $k$-symplectic field theory. Journal of Geometric Mechanics, 2015, 7 (4) : 395-429. doi: 10.3934/jgm.2015.7.395

[8]

Antoine Gournay. A dynamical approach to von Neumann dimension. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 967-987. doi: 10.3934/dcds.2010.26.967

[9]

Irena Lasiecka, Justin Webster. Eliminating flutter for clamped von Karman plates immersed in subsonic flows. Communications on Pure and Applied Analysis, 2014, 13 (5) : 1935-1969. doi: 10.3934/cpaa.2014.13.1935

[10]

Manuel Friedrich, Bernd Schmidt. On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime. Networks and Heterogeneous Media, 2015, 10 (2) : 321-342. doi: 10.3934/nhm.2015.10.321

[11]

G. Idone, A. Maugeri. Variational inequalities and a transport planning for an elastic and continuum model. Journal of Industrial and Management Optimization, 2005, 1 (1) : 81-86. doi: 10.3934/jimo.2005.1.81

[12]

Peter Benner, Tobias Breiten, Carsten Hartmann, Burkhard Schmidt. Model reduction of controlled Fokker–Planck and Liouville–von Neumann equations. Journal of Computational Dynamics, 2020, 7 (1) : 1-33. doi: 10.3934/jcd.2020001

[13]

Julián Fernández Bonder, Analía Silva, Juan F. Spedaletti. Gamma convergence and asymptotic behavior for eigenvalues of nonlocal problems. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2125-2140. doi: 10.3934/dcds.2020355

[14]

Gianni Dal Maso. Ennio De Giorgi and $\mathbf\Gamma$-convergence. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1017-1021. doi: 10.3934/dcds.2011.31.1017

[15]

Alexander Mielke. Deriving amplitude equations via evolutionary $\Gamma$-convergence. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2679-2700. doi: 10.3934/dcds.2015.35.2679

[16]

Junjiang Lai, Jianguo Huang. A finite element method for vibration analysis of elastic plate-plate structures. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 387-419. doi: 10.3934/dcdsb.2009.11.387

[17]

I. D. Chueshov. Interaction of an elastic plate with a linearized inviscid incompressible fluid. Communications on Pure and Applied Analysis, 2014, 13 (5) : 1759-1778. doi: 10.3934/cpaa.2014.13.1759

[18]

Moncef Aouadi, Imed Mahfoudhi, Taoufik Moulahi. Approximate controllability of nonsimple elastic plate with memory. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1015-1043. doi: 10.3934/dcdss.2021147

[19]

Jianqin Zhou, Wanquan Liu, Xifeng Wang, Guanglu Zhou. On the $ k $-error linear complexity for $ p^n $-periodic binary sequences via hypercube theory. Mathematical Foundations of Computing, 2019, 2 (4) : 279-297. doi: 10.3934/mfc.2019018

[20]

Ning Zhang, Qiang Wu. Online learning for supervised dimension reduction. Mathematical Foundations of Computing, 2019, 2 (2) : 95-106. doi: 10.3934/mfc.2019008

2021 Impact Factor: 1.41

Article outline

[Back to Top]