
-
Previous Article
Effect of time delay on flocking dynamics
- NHM Home
- This Issue
-
Next Article
Uniform stability of the Cucker–Smale and thermodynamic Cucker–Smale ensembles with singular kernels
Splitting scheme for a macroscopic crowd motion model with congestion for a two-typed population
LMO - Laboratoire de Mathématiques d'Orsay, France |
We study the extension of the macroscopic crowd motion model with congestion to a population divided into two types. As the set of pairs of density whose sum is bounded is not geodesically convex in the product of Wasserstein spaces, the generic splitting scheme may be ill-posed. We thus analyze precisely the projection operator on the set of admissible densities, and link it to the projection on the set of measures of bounded density in the mono-type case. We then derive a numerical scheme to adapt the one-typed population splitting scheme.
References:
[1] |
L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metricspaces and in the Space of Proba-bility Measures, Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2005. |
[2] |
T. M. Blackwell and P. Bentley, Don't push me! Collision-avoiding swarms, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No. 02TH8600), IEEE, 2 (2002). |
[3] |
V. J. Blue and J. L. Adler,
Cellular automata microsimulation for modeling bi-directional pedestrian walkways, Transportation Research Part B: Methodological, 35 (2001), 293-312.
doi: 10.1016/S0191-2615(99)00052-1. |
[4] |
C. E. Brennen, Fundamentals of Multiphase flow, 2005.
doi: 10.1017/CBO9780511807169. |
[5] |
C. Burstedde, et al., Simulation of pedestrian dynamics using a two-dimensional cellular
automaton, Physica A: Statistical Mechanics and its Applications, 295 (2001), 507–525.
doi: 10.1016/S0378-4371(01)00141-8. |
[6] |
C. Cancés, T. O. Gallouét and L. Monsaingeon,
Incompressible immiscible multiphase flows in porous media: A variational approach, Anal. PDE, 10 (2017), 1845-1876.
doi: 10.2140/apde.2017.10.1845. |
[7] |
G. Carlier and et al.,
Convergence of entropic schemes for optimal transport and gradient flows, SIAM J. Math. Anal., 49 (2017), 1385-1418.
doi: 10.1137/15M1050264. |
[8] |
J. A. Carrillo, M. P. Gualdani and G. Toscani,
Finite speed of propagation in porous media by mass transportation methods, C. R. Math., 338 (2004), 815-818.
doi: 10.1016/j.crma.2004.03.025. |
[9] |
C. T. Crowe, Multiphase Flow Handbook, CRC press, 2005.
doi: 10.1201/9781420040470.![]() ![]() |
[10] |
M. Cuturi,
Sinkhorn distances: Lightspeed computation of optimal transport, Advances in Neural Information Processing Systems, 26 (2013), 2292-2300.
|
[11] |
D. Helbing and P. Molnar,
Social force model for pedestrian dynamics, Physical review E, 51 (1995), 4282.
|
[12] |
R. Jordan, D. Kinderlehrer and F. Otto,
The variational formulation of the Fokker–Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17.
doi: 10.1137/S0036141096303359. |
[13] |
I. Kim and A. R. Mészáros,
On nonlinear cross-diffusion systems: An optimal transport approach, Calc. Var. Partial Differential Equations, 57 (2018), 1-40.
doi: 10.1007/s00526-018-1351-9. |
[14] |
B. Maury, A. Roudneff-Chupin and F. Santambrogio,
A macroscopic crowd motion model of gradient flow type, Math. Models Methods Appl. Sci., 20 (2010), 1787-1821.
doi: 10.1142/S0218202510004799. |
[15] |
B. Maury, A. Roudneff-Chupin, F. Santambrogio and J. Venel,
Handling congestion in crowd motion modeling, Netw. Heterog. Media, 6 (2011), 485-519.
doi: 10.3934/nhm.2011.6.485. |
[16] |
A. Mogilner and L. Edelstein-Keshet,
A non-local model for a swarm, J. Math. Biol., 38 (1999), 534-570.
doi: 10.1007/s002850050158. |
[17] |
D. Morale, V. Capasso and K. Oelschláger,
An interacting particle system modelling aggregation behavior: From individuals to populations, J. Math. Biol., 50 (2005), 49-66.
doi: 10.1007/s00285-004-0279-1. |
[18] |
J. J. Moreau,
Evolution problem associated with a moving convex set in a Hilbert space, J. Differential Equations, 26 (1977), 347-374.
doi: 10.1016/0022-0396(77)90085-7. |
[19] |
F. Otto,
The geometry of dissipative evolution equations: The porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101-174.
doi: 10.1081/PDE-100002243. |
[20] |
G. Peyré,
Entropic approximation of Wasserstein gradient flows, SIAM J. Imaging Sci., 8 (2015), 2323-2351.
doi: 10.1137/15M1010087. |
[21] |
A. Roudneff-Chupin, Modélisation macroscopique de mouvements de foule, Phdthesis, PhD Thesis, Université Paris-Sud XI, 2011. |
[22] |
F. Santambrogio, Optimal Transport for Applied Mathematicians, Birkhäuser/Springer, Cham, 2015.
doi: 10.1007/978-3-319-20828-2. |
[23] |
R. H. Silsbee,
Focusing in collision problems in solids, J. Appl. Physics, 28 (1957), 1246-1250.
|
[24] |
V. Shvetsov and D. Helbing,
Macroscopic dynamics of multilane traffic, Physical Review E, 29 (1999), 6328.
|
show all references
References:
[1] |
L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metricspaces and in the Space of Proba-bility Measures, Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2005. |
[2] |
T. M. Blackwell and P. Bentley, Don't push me! Collision-avoiding swarms, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No. 02TH8600), IEEE, 2 (2002). |
[3] |
V. J. Blue and J. L. Adler,
Cellular automata microsimulation for modeling bi-directional pedestrian walkways, Transportation Research Part B: Methodological, 35 (2001), 293-312.
doi: 10.1016/S0191-2615(99)00052-1. |
[4] |
C. E. Brennen, Fundamentals of Multiphase flow, 2005.
doi: 10.1017/CBO9780511807169. |
[5] |
C. Burstedde, et al., Simulation of pedestrian dynamics using a two-dimensional cellular
automaton, Physica A: Statistical Mechanics and its Applications, 295 (2001), 507–525.
doi: 10.1016/S0378-4371(01)00141-8. |
[6] |
C. Cancés, T. O. Gallouét and L. Monsaingeon,
Incompressible immiscible multiphase flows in porous media: A variational approach, Anal. PDE, 10 (2017), 1845-1876.
doi: 10.2140/apde.2017.10.1845. |
[7] |
G. Carlier and et al.,
Convergence of entropic schemes for optimal transport and gradient flows, SIAM J. Math. Anal., 49 (2017), 1385-1418.
doi: 10.1137/15M1050264. |
[8] |
J. A. Carrillo, M. P. Gualdani and G. Toscani,
Finite speed of propagation in porous media by mass transportation methods, C. R. Math., 338 (2004), 815-818.
doi: 10.1016/j.crma.2004.03.025. |
[9] |
C. T. Crowe, Multiphase Flow Handbook, CRC press, 2005.
doi: 10.1201/9781420040470.![]() ![]() |
[10] |
M. Cuturi,
Sinkhorn distances: Lightspeed computation of optimal transport, Advances in Neural Information Processing Systems, 26 (2013), 2292-2300.
|
[11] |
D. Helbing and P. Molnar,
Social force model for pedestrian dynamics, Physical review E, 51 (1995), 4282.
|
[12] |
R. Jordan, D. Kinderlehrer and F. Otto,
The variational formulation of the Fokker–Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17.
doi: 10.1137/S0036141096303359. |
[13] |
I. Kim and A. R. Mészáros,
On nonlinear cross-diffusion systems: An optimal transport approach, Calc. Var. Partial Differential Equations, 57 (2018), 1-40.
doi: 10.1007/s00526-018-1351-9. |
[14] |
B. Maury, A. Roudneff-Chupin and F. Santambrogio,
A macroscopic crowd motion model of gradient flow type, Math. Models Methods Appl. Sci., 20 (2010), 1787-1821.
doi: 10.1142/S0218202510004799. |
[15] |
B. Maury, A. Roudneff-Chupin, F. Santambrogio and J. Venel,
Handling congestion in crowd motion modeling, Netw. Heterog. Media, 6 (2011), 485-519.
doi: 10.3934/nhm.2011.6.485. |
[16] |
A. Mogilner and L. Edelstein-Keshet,
A non-local model for a swarm, J. Math. Biol., 38 (1999), 534-570.
doi: 10.1007/s002850050158. |
[17] |
D. Morale, V. Capasso and K. Oelschláger,
An interacting particle system modelling aggregation behavior: From individuals to populations, J. Math. Biol., 50 (2005), 49-66.
doi: 10.1007/s00285-004-0279-1. |
[18] |
J. J. Moreau,
Evolution problem associated with a moving convex set in a Hilbert space, J. Differential Equations, 26 (1977), 347-374.
doi: 10.1016/0022-0396(77)90085-7. |
[19] |
F. Otto,
The geometry of dissipative evolution equations: The porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101-174.
doi: 10.1081/PDE-100002243. |
[20] |
G. Peyré,
Entropic approximation of Wasserstein gradient flows, SIAM J. Imaging Sci., 8 (2015), 2323-2351.
doi: 10.1137/15M1010087. |
[21] |
A. Roudneff-Chupin, Modélisation macroscopique de mouvements de foule, Phdthesis, PhD Thesis, Université Paris-Sud XI, 2011. |
[22] |
F. Santambrogio, Optimal Transport for Applied Mathematicians, Birkhäuser/Springer, Cham, 2015.
doi: 10.1007/978-3-319-20828-2. |
[23] |
R. H. Silsbee,
Focusing in collision problems in solids, J. Appl. Physics, 28 (1957), 1246-1250.
|
[24] |
V. Shvetsov and D. Helbing,
Macroscopic dynamics of multilane traffic, Physical Review E, 29 (1999), 6328.
|








[1] |
Bertrand Maury, Aude Roudneff-Chupin, Filippo Santambrogio, Juliette Venel. Handling congestion in crowd motion modeling. Networks and Heterogeneous Media, 2011, 6 (3) : 485-519. doi: 10.3934/nhm.2011.6.485 |
[2] |
Tan H. Cao, Boris S. Mordukhovich. Applications of optimal control of a nonconvex sweeping process to optimization of the planar crowd motion model. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4191-4216. doi: 10.3934/dcdsb.2019078 |
[3] |
Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300 |
[4] |
Tan H. Cao, Boris S. Mordukhovich. Optimality conditions for a controlled sweeping process with applications to the crowd motion model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 267-306. doi: 10.3934/dcdsb.2017014 |
[5] |
Martin Burger, Peter Alexander Markowich, Jan-Frederik Pietschmann. Continuous limit of a crowd motion and herding model: Analysis and numerical simulations. Kinetic and Related Models, 2011, 4 (4) : 1025-1047. doi: 10.3934/krm.2011.4.1025 |
[6] |
Guangcun Lu. The splitting lemmas for nonsmooth functionals on Hilbert spaces I. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2939-2990. doi: 10.3934/dcds.2013.33.2939 |
[7] |
Qinglan Xia. An application of optimal transport paths to urban transport networks. Conference Publications, 2005, 2005 (Special) : 904-910. doi: 10.3934/proc.2005.2005.904 |
[8] |
Johannes Eilinghoff, Roland Schnaubelt. Error analysis of an ADI splitting scheme for the inhomogeneous Maxwell equations. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5685-5709. doi: 10.3934/dcds.2018248 |
[9] |
Manh Hong Duong, Yulong Lu. An operator splitting scheme for the fractional kinetic Fokker-Planck equation. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5707-5727. doi: 10.3934/dcds.2019250 |
[10] |
Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete and Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353 |
[11] |
Wilfrid Gangbo, Andrzej Świech. Optimal transport and large number of particles. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1397-1441. doi: 10.3934/dcds.2014.34.1397 |
[12] |
Martin Burger, Jan-Frederik Pietschmann, Marie-Therese Wolfram. Identification of nonlinearities in transport-diffusion models of crowded motion. Inverse Problems and Imaging, 2013, 7 (4) : 1157-1182. doi: 10.3934/ipi.2013.7.1157 |
[13] |
Yohan Penel. An explicit stable numerical scheme for the $1D$ transport equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 641-656. doi: 10.3934/dcdss.2012.5.641 |
[14] |
Giuseppe Savaré. Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in $RCD (K, \infty)$ metric measure spaces. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1641-1661. doi: 10.3934/dcds.2014.34.1641 |
[15] |
Robert J. McCann. A glimpse into the differential topology and geometry of optimal transport. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1605-1621. doi: 10.3934/dcds.2014.34.1605 |
[16] |
Paul Pegon, Filippo Santambrogio, Davide Piazzoli. Full characterization of optimal transport plans for concave costs. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 6113-6132. doi: 10.3934/dcds.2015.35.6113 |
[17] |
Sören Dittmer, Carola-Bibiane Schönlieb, Peter Maass. Ground truth free denoising by optimal transport. Numerical Algebra, Control and Optimization, 2022 doi: 10.3934/naco.2022017 |
[18] |
Jingwei Hu, Shi Jin, Li Wang. An asymptotic-preserving scheme for the semiconductor Boltzmann equation with two-scale collisions: A splitting approach. Kinetic and Related Models, 2015, 8 (4) : 707-723. doi: 10.3934/krm.2015.8.707 |
[19] |
Andreas C. Aristotelous, Ohannes Karakashian, Steven M. Wise. A mixed discontinuous Galerkin, convex splitting scheme for a modified Cahn-Hilliard equation and an efficient nonlinear multigrid solver. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2211-2238. doi: 10.3934/dcdsb.2013.18.2211 |
[20] |
André Marques, Fátima Silva Leite. Pure rolling motion of hyperquadrics in pseudo-Euclidean spaces. Journal of Geometric Mechanics, 2022, 14 (1) : 105-129. doi: 10.3934/jgm.2021033 |
2021 Impact Factor: 1.41
Tools
Metrics
Other articles
by authors
[Back to Top]