
- Previous Article
- NHM Home
- This Issue
-
Next Article
Splitting scheme for a macroscopic crowd motion model with congestion for a two-typed population
Effect of time delay on flocking dynamics
1. | Department of Financial Engineering, Ajou University, Republic of Korea |
2. | Department of Mathematics and Research Institute of Natural Science, Gyeongsang National University, Republic of Korea |
3. | Department of Financial Engineering, Ajou University, Republic of Korea |
4. | Department of Mathematics, Sungkyunkwan University, Republic of Korea |
We propose a time-delayed Cucker-Smale type model(CS model), which can be applied to modeling (1) collective dynamics of self-propelling agents and (2) the dynamical system of stock return volatility in a financial market. For both models, we assume that it takes a certain amount of time to collect/process information about the current position/return configuration until velocity/volatility adjustment is made. We provide a sufficient condition under which flocking phenomena occur. We also identify the initial configuration for a two-agent case, in which collective behaviors are accelerated by changes in the delay parameter. Numerical illustrations and financial simulations are carried out to verify the validity of the model.
References:
[1] |
J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, F. Ritort and R. Spigler,
The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137.
|
[2] |
S. Ahn, H.-O. Bae, S.-Y. Ha, Y. Kim and H. Lim,
Application of flocking mechanism to the modeling of stochastic volatility, Math. Models Methods Appl. Sci., 23 (2013), 1603-1628.
doi: 10.1142/S0218202513500176. |
[3] |
G. Albi, N. Bellomo, L. Fermo, S.-Y. Ha, J. Kim, L. Pareschi, D. Poyato and J. Soler,
Vehicular traffic, crowds and swarms: From kinetic theory and multiscale methods to applications and research perspectives, Math. Mod. Meth. Appl. Sci., 29 (2019), 1901-2005.
doi: 10.1142/S0218202519500374. |
[4] |
G. Albi and L. Pareschi,
Modeling of self-organized systems interacting with a few individuals: From microscopic to macroscopic dynamics, Appl. Math. Lett., 26 (2013), 397-401.
doi: 10.1016/j.aml.2012.10.011. |
[5] |
T. G. Andersen,
Stochastic autoregressive volatility: A framework for volatility modeling, Math. Fin., 42 (1994), 75-102.
|
[6] |
H.-O. Bae, S.-Y. Cho, J.-H. Kim and S.-B. Yun,
A kinetic description for the herding behavior in financial market, J. Stat Phys., 176 (2019), 398-424.
doi: 10.1007/s10955-019-02305-4. |
[7] |
H.-O. Bae, S.-Y. Cho, S.-H. Lee, J. Yoo and S.-B. Yun,
A particle model for the herding phenomena induced by dynamic market signals, J. Stat. Phys., 177 (2019), 365-398.
doi: 10.1007/s10955-019-02371-8. |
[8] |
H.-O. Bae, S.-Y. Ha, M. Kang, Y. Kim, H. Lim and J. Yoo, Time-delayed stochastic volatility model, Phys. D: Nonlinear Phen., 430 (2022), 133088, 14 pp.
doi: 10.1016/j.physd.2021.133088. |
[9] |
H.-O. Bae, S.-Y. Ha, D. Kim, Y. Kim, H. Lim and J. Yoo,
Emergent dynamics of the first-order stochastic Cucker-Smale model and application to finance, Math. Methods Appl. Sci., 42 (2019), 6029-6048.
doi: 10.1002/mma.5697. |
[10] |
H.-O. Bae, S.-Y. Ha, Y. Kim, S.-Y. Lee, H. Lim and J. Yoo,
A mathematical model for volatility flocking with a regime switching mechanism in a stock market, Math. Models Methods Appl. Sci., 25 (2015), 1299-1335.
doi: 10.1142/S0218202515500335. |
[11] |
H.-O. Bae, S.-Y. Ha, Y. Kim, H. Lim and J. Yoo,
Volatility flocking by cucker-smale mechanism in financial markets, Asia-Pacific Fin. Mkts., 27 (2020), 387-414.
|
[12] |
R. T. Baillie, T. Bollerslev and H. O. Mikkelson,
Fractionally integrated generalized autoregressive conditional heteroskedasticity, J. Econom., 74 (1996), 3-30.
doi: 10.1016/S0304-4076(95)01749-6. |
[13] |
N. Bellomo, H. Berestycki, F. Brezzi and J. Nadal,
Mathematics and complexity in life and human sciences, Math. Mod. Meth. Appl. Sci., 20 (2010), 1391-1395.
doi: 10.1142/S0218202510004702. |
[14] |
T. Bollerslev,
On the correlation structure of the generalize autoregressive conditional heteroscedastic process, J. Time. Ser. Anal., 9 (1988), 121-131.
doi: 10.1111/j.1467-9892.1988.tb00459.x. |
[15] |
T. Bollerslev and R. F. Engle,
Common persistence in conditional variances, Econometrica, 61 (1993), 167-186.
doi: 10.2307/2951782. |
[16] |
T. Bollerslev, R. F. Engle and J. M. Wooldridge,
A capital asset pricing model with time-varying covariances, J. Pol. Econ., 96 (1988), 116-131.
|
[17] |
J. A. Carrillo, Y.-P. Choi, P. B. Mucha and J. Peszek,
Sharp conditions to avoid collisions in singular Cucker-Smale interactions, Nonlinear Anal. Real World Appl., 37 (2017), 317-328.
doi: 10.1016/j.nonrwa.2017.02.017. |
[18] |
Y.-P. Choi and J. Haskovec,
Cucker-Smale model with normalized communication weights and time delay, Kinet. Relat. Models, 10 (2017), 1011-1033.
doi: 10.3934/krm.2017040. |
[19] |
Y.-P. Choi and C. Pignotti,
Emergent behavior of Cucker-Smale model with normalized weights and distributed time delays, Netw. Heterog. Media, 14 (2019), 789-804.
doi: 10.3934/nhm.2019032. |
[20] |
F. Cucker and S. Smale,
Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.
doi: 10.1109/TAC.2007.895842. |
[21] |
L. C. Davis,
Modifications of the optimal velocity traffic model to include delay due to driver reaction time, Phys. A: Stat. Mech. and its Appl., 319 (2003), 557-567.
|
[22] |
J.-G. Dong, S.-Y. Ha and D. Kim,
Interplay of time-delay and velocity alignment in the Cucker-Smale model on a general digraph, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 5569-5596.
doi: 10.3934/dcdsb.2019072. |
[23] |
J.-G. Dong, S.-Y. Ha, D. Kim and J. Kim,
Time-delay effect on the flocking in an ensemble of thermomechanical Cucker-Smale particles, J. Differential Equations, 266 (2019), 2373-2407.
doi: 10.1016/j.jde.2018.08.034. |
[24] |
M. R. D'Orsogna, Y. L. Chuang, A. L. Bertozzi and L. S. Chayes,
Self-propelled particles with soft-core interactions: Patterns, stability, and collapse, Phys. Rev. Lett., 96 (2006), 104302.
|
[25] |
R. F. Engle,
Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation, Econometrica, 50 (1982), 987-1007.
doi: 10.2307/1912773. |
[26] |
S. Galam and J. Zucker,
From individual choice to group decision-making, Phys A: Stat. Mech. and its Appl., 287 (2000), 644-659.
doi: 10.1016/S0378-4371(00)00399-X. |
[27] |
S. A. Gourley, J. H. So and J. H. Wu,
Nonlocality of reaction-diffusion equations induced by delay: Biological modeling and nonlinear dynamics, J. Math. Sci., 124 (2004), 5119-5153.
doi: 10.1023/B:JOTH.0000047249.39572.6d. |
[28] |
S.-Y. Ha, K. Lee and D. Levy,
Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453-469.
|
[29] |
S.-Y. Ha, S. E. Noh and J. Park,
Synchronization of Kuramoto oscillators with adaptive couplings, SIAM J. Appl. Dyn. Syst., 15 (2016), 162-194.
doi: 10.1137/15M101484X. |
[30] |
A. C. Harvey, E. Ruiz and E. Santana,
Unobserved component time series models with ARCH disturbances, J. Econom., 52 (1992), 129-157.
|
[31] |
G. A. Karolyi,
A multivariate GARCH model of international transmission of stock returns and volatility: The case of United States and Canada, J. Bus. Econ. Stat., 13 (1995), 11-25.
|
[32] |
Y. Kazmerchuk, A. Swishchuk and J. Wu,
A continuous-time Garch model for stochastic volatility with delay, Can. Appl. Math. Q., 13 (2005), 123-149.
|
[33] |
Y. N. Kyrychko and S. J. Hogan,
On the use of delay equations in engineering applications, J. Vib. Cont., 16 (2010), 943-960.
doi: 10.1177/1077546309341100. |
[34] |
S. M. Lenhart and C. C. Travis,
Global stability of a biological model with time delay, Proc. Amer. Math. Soc., 96 (1986), 75-78.
doi: 10.2307/2045656. |
[35] |
Z. Li and X. Xue,
Cucker-Smale flocking under rooted leadership with fixed and switching topologies, SIAM J. Appl. Math., 70 (2010), 3156-3174.
doi: 10.1137/100791774. |
[36] |
J. Lu, D. W. Ho and J. Kurths,
Consensus over directed static networks with arbitrary finite communication delays, Phys. Rev. E., 80 (2009), 066121.
|
[37] |
X. Lu, H. Zhang, W. Wang and K. L. Teo,
Kalman filtering for multiple time-delay systems, Automatica, 41 (2005), 1455-1461.
doi: 10.1016/j.automatica.2005.03.018. |
[38] |
A. Martin and S. Ruan,
Predator-prey models with delay and prey harvesting, J. Math. Biol., 43 (2001), 247-267.
doi: 10.1007/s002850100095. |
[39] |
S. Motsch and E. Tadmor,
A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 144 (2011), 923-947.
doi: 10.1007/s10955-011-0285-9. |
[40] |
J. Park, H. J. Kim and S.-Y. Ha,
Cucker-Smale flocking with inter-particle bonding forces, IEEE Trans. Automat. Cont., 55 (2010), 2617-2623.
doi: 10.1109/TAC.2010.2061070. |
[41] |
M. R. Roussel,
The use of delay differential equations in chemical kinetics, J. Phys. Chem., 100 (1996), 8323-8330.
|
[42] |
J. Shen,
Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2007/08), 694-719.
doi: 10.1137/060673254. |
[43] |
R. Sipahi, F. M. Atay and S. I. Niculescu,
Stability of traffic flow behavior with distributed delays modeling the memory effects of the drivers, SIAM J. Appl. Math., 68 (2008), 738-759.
doi: 10.1137/060673813. |
[44] |
J. C. Sprott,
A simple chaotic delay differential equation, Phys. Lett. A., 366 (2007), 397-402.
doi: 10.1016/j.physleta.2007.01.083. |
[45] |
G. Stoica,
A stochastic delay financial model, Proc. Amer. Math. Soc., 133 (2005), 1837-1841.
doi: 10.1090/S0002-9939-04-07765-2. |
[46] |
T. Vicsek, A. Cziròk, E. Ben-Jacob, I. Cohen and O. Shochet,
Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.
doi: 10.1103/PhysRevLett.75.1226. |
[47] |
J. Zhang, J. Zhu and C. Qian,
On equilibria and consensus of the Lohe model with identical oscillators, SIAM J. Appl. Dyn. Syst., 17 (2018), 1716-1741.
doi: 10.1137/17M112765X. |
show all references
References:
[1] |
J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, F. Ritort and R. Spigler,
The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137.
|
[2] |
S. Ahn, H.-O. Bae, S.-Y. Ha, Y. Kim and H. Lim,
Application of flocking mechanism to the modeling of stochastic volatility, Math. Models Methods Appl. Sci., 23 (2013), 1603-1628.
doi: 10.1142/S0218202513500176. |
[3] |
G. Albi, N. Bellomo, L. Fermo, S.-Y. Ha, J. Kim, L. Pareschi, D. Poyato and J. Soler,
Vehicular traffic, crowds and swarms: From kinetic theory and multiscale methods to applications and research perspectives, Math. Mod. Meth. Appl. Sci., 29 (2019), 1901-2005.
doi: 10.1142/S0218202519500374. |
[4] |
G. Albi and L. Pareschi,
Modeling of self-organized systems interacting with a few individuals: From microscopic to macroscopic dynamics, Appl. Math. Lett., 26 (2013), 397-401.
doi: 10.1016/j.aml.2012.10.011. |
[5] |
T. G. Andersen,
Stochastic autoregressive volatility: A framework for volatility modeling, Math. Fin., 42 (1994), 75-102.
|
[6] |
H.-O. Bae, S.-Y. Cho, J.-H. Kim and S.-B. Yun,
A kinetic description for the herding behavior in financial market, J. Stat Phys., 176 (2019), 398-424.
doi: 10.1007/s10955-019-02305-4. |
[7] |
H.-O. Bae, S.-Y. Cho, S.-H. Lee, J. Yoo and S.-B. Yun,
A particle model for the herding phenomena induced by dynamic market signals, J. Stat. Phys., 177 (2019), 365-398.
doi: 10.1007/s10955-019-02371-8. |
[8] |
H.-O. Bae, S.-Y. Ha, M. Kang, Y. Kim, H. Lim and J. Yoo, Time-delayed stochastic volatility model, Phys. D: Nonlinear Phen., 430 (2022), 133088, 14 pp.
doi: 10.1016/j.physd.2021.133088. |
[9] |
H.-O. Bae, S.-Y. Ha, D. Kim, Y. Kim, H. Lim and J. Yoo,
Emergent dynamics of the first-order stochastic Cucker-Smale model and application to finance, Math. Methods Appl. Sci., 42 (2019), 6029-6048.
doi: 10.1002/mma.5697. |
[10] |
H.-O. Bae, S.-Y. Ha, Y. Kim, S.-Y. Lee, H. Lim and J. Yoo,
A mathematical model for volatility flocking with a regime switching mechanism in a stock market, Math. Models Methods Appl. Sci., 25 (2015), 1299-1335.
doi: 10.1142/S0218202515500335. |
[11] |
H.-O. Bae, S.-Y. Ha, Y. Kim, H. Lim and J. Yoo,
Volatility flocking by cucker-smale mechanism in financial markets, Asia-Pacific Fin. Mkts., 27 (2020), 387-414.
|
[12] |
R. T. Baillie, T. Bollerslev and H. O. Mikkelson,
Fractionally integrated generalized autoregressive conditional heteroskedasticity, J. Econom., 74 (1996), 3-30.
doi: 10.1016/S0304-4076(95)01749-6. |
[13] |
N. Bellomo, H. Berestycki, F. Brezzi and J. Nadal,
Mathematics and complexity in life and human sciences, Math. Mod. Meth. Appl. Sci., 20 (2010), 1391-1395.
doi: 10.1142/S0218202510004702. |
[14] |
T. Bollerslev,
On the correlation structure of the generalize autoregressive conditional heteroscedastic process, J. Time. Ser. Anal., 9 (1988), 121-131.
doi: 10.1111/j.1467-9892.1988.tb00459.x. |
[15] |
T. Bollerslev and R. F. Engle,
Common persistence in conditional variances, Econometrica, 61 (1993), 167-186.
doi: 10.2307/2951782. |
[16] |
T. Bollerslev, R. F. Engle and J. M. Wooldridge,
A capital asset pricing model with time-varying covariances, J. Pol. Econ., 96 (1988), 116-131.
|
[17] |
J. A. Carrillo, Y.-P. Choi, P. B. Mucha and J. Peszek,
Sharp conditions to avoid collisions in singular Cucker-Smale interactions, Nonlinear Anal. Real World Appl., 37 (2017), 317-328.
doi: 10.1016/j.nonrwa.2017.02.017. |
[18] |
Y.-P. Choi and J. Haskovec,
Cucker-Smale model with normalized communication weights and time delay, Kinet. Relat. Models, 10 (2017), 1011-1033.
doi: 10.3934/krm.2017040. |
[19] |
Y.-P. Choi and C. Pignotti,
Emergent behavior of Cucker-Smale model with normalized weights and distributed time delays, Netw. Heterog. Media, 14 (2019), 789-804.
doi: 10.3934/nhm.2019032. |
[20] |
F. Cucker and S. Smale,
Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.
doi: 10.1109/TAC.2007.895842. |
[21] |
L. C. Davis,
Modifications of the optimal velocity traffic model to include delay due to driver reaction time, Phys. A: Stat. Mech. and its Appl., 319 (2003), 557-567.
|
[22] |
J.-G. Dong, S.-Y. Ha and D. Kim,
Interplay of time-delay and velocity alignment in the Cucker-Smale model on a general digraph, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 5569-5596.
doi: 10.3934/dcdsb.2019072. |
[23] |
J.-G. Dong, S.-Y. Ha, D. Kim and J. Kim,
Time-delay effect on the flocking in an ensemble of thermomechanical Cucker-Smale particles, J. Differential Equations, 266 (2019), 2373-2407.
doi: 10.1016/j.jde.2018.08.034. |
[24] |
M. R. D'Orsogna, Y. L. Chuang, A. L. Bertozzi and L. S. Chayes,
Self-propelled particles with soft-core interactions: Patterns, stability, and collapse, Phys. Rev. Lett., 96 (2006), 104302.
|
[25] |
R. F. Engle,
Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation, Econometrica, 50 (1982), 987-1007.
doi: 10.2307/1912773. |
[26] |
S. Galam and J. Zucker,
From individual choice to group decision-making, Phys A: Stat. Mech. and its Appl., 287 (2000), 644-659.
doi: 10.1016/S0378-4371(00)00399-X. |
[27] |
S. A. Gourley, J. H. So and J. H. Wu,
Nonlocality of reaction-diffusion equations induced by delay: Biological modeling and nonlinear dynamics, J. Math. Sci., 124 (2004), 5119-5153.
doi: 10.1023/B:JOTH.0000047249.39572.6d. |
[28] |
S.-Y. Ha, K. Lee and D. Levy,
Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453-469.
|
[29] |
S.-Y. Ha, S. E. Noh and J. Park,
Synchronization of Kuramoto oscillators with adaptive couplings, SIAM J. Appl. Dyn. Syst., 15 (2016), 162-194.
doi: 10.1137/15M101484X. |
[30] |
A. C. Harvey, E. Ruiz and E. Santana,
Unobserved component time series models with ARCH disturbances, J. Econom., 52 (1992), 129-157.
|
[31] |
G. A. Karolyi,
A multivariate GARCH model of international transmission of stock returns and volatility: The case of United States and Canada, J. Bus. Econ. Stat., 13 (1995), 11-25.
|
[32] |
Y. Kazmerchuk, A. Swishchuk and J. Wu,
A continuous-time Garch model for stochastic volatility with delay, Can. Appl. Math. Q., 13 (2005), 123-149.
|
[33] |
Y. N. Kyrychko and S. J. Hogan,
On the use of delay equations in engineering applications, J. Vib. Cont., 16 (2010), 943-960.
doi: 10.1177/1077546309341100. |
[34] |
S. M. Lenhart and C. C. Travis,
Global stability of a biological model with time delay, Proc. Amer. Math. Soc., 96 (1986), 75-78.
doi: 10.2307/2045656. |
[35] |
Z. Li and X. Xue,
Cucker-Smale flocking under rooted leadership with fixed and switching topologies, SIAM J. Appl. Math., 70 (2010), 3156-3174.
doi: 10.1137/100791774. |
[36] |
J. Lu, D. W. Ho and J. Kurths,
Consensus over directed static networks with arbitrary finite communication delays, Phys. Rev. E., 80 (2009), 066121.
|
[37] |
X. Lu, H. Zhang, W. Wang and K. L. Teo,
Kalman filtering for multiple time-delay systems, Automatica, 41 (2005), 1455-1461.
doi: 10.1016/j.automatica.2005.03.018. |
[38] |
A. Martin and S. Ruan,
Predator-prey models with delay and prey harvesting, J. Math. Biol., 43 (2001), 247-267.
doi: 10.1007/s002850100095. |
[39] |
S. Motsch and E. Tadmor,
A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 144 (2011), 923-947.
doi: 10.1007/s10955-011-0285-9. |
[40] |
J. Park, H. J. Kim and S.-Y. Ha,
Cucker-Smale flocking with inter-particle bonding forces, IEEE Trans. Automat. Cont., 55 (2010), 2617-2623.
doi: 10.1109/TAC.2010.2061070. |
[41] |
M. R. Roussel,
The use of delay differential equations in chemical kinetics, J. Phys. Chem., 100 (1996), 8323-8330.
|
[42] |
J. Shen,
Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2007/08), 694-719.
doi: 10.1137/060673254. |
[43] |
R. Sipahi, F. M. Atay and S. I. Niculescu,
Stability of traffic flow behavior with distributed delays modeling the memory effects of the drivers, SIAM J. Appl. Math., 68 (2008), 738-759.
doi: 10.1137/060673813. |
[44] |
J. C. Sprott,
A simple chaotic delay differential equation, Phys. Lett. A., 366 (2007), 397-402.
doi: 10.1016/j.physleta.2007.01.083. |
[45] |
G. Stoica,
A stochastic delay financial model, Proc. Amer. Math. Soc., 133 (2005), 1837-1841.
doi: 10.1090/S0002-9939-04-07765-2. |
[46] |
T. Vicsek, A. Cziròk, E. Ben-Jacob, I. Cohen and O. Shochet,
Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.
doi: 10.1103/PhysRevLett.75.1226. |
[47] |
J. Zhang, J. Zhu and C. Qian,
On equilibria and consensus of the Lohe model with identical oscillators, SIAM J. Appl. Dyn. Syst., 17 (2018), 1716-1741.
doi: 10.1137/17M112765X. |






Left: Real volatility data
Center: Simulated data based on (1)
Right: Simulated data based on (21)
Note: Volatilities are drawn over the sample period. We use thirty firms listed on DJIA and

Left-top: Real volatility data
Right-top: Simulated data based on
Left-bottom: Simulated data based on
Right-bottom: Simulated data based on
Note: Volatilities are drawn over the sample period. We use thirty firms listed on DJIA. See text for details of data sources and values of other parameters.
[1] |
Mauro Rodriguez Cartabia. Cucker-Smale model with time delay. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2409-2432. doi: 10.3934/dcds.2021195 |
[2] |
Lining Ru, Xiaoping Xue. Flocking of Cucker-Smale model with intrinsic dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6817-6835. doi: 10.3934/dcdsb.2019168 |
[3] |
Young-Pil Choi, Jan Haskovec. Cucker-Smale model with normalized communication weights and time delay. Kinetic and Related Models, 2017, 10 (4) : 1011-1033. doi: 10.3934/krm.2017040 |
[4] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic and Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[5] |
Seung-Yeal Ha, Jinwook Jung, Peter Kuchling. Emergence of anomalous flocking in the fractional Cucker-Smale model. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5465-5489. doi: 10.3934/dcds.2019223 |
[6] |
Chun-Hsien Li, Suh-Yuh Yang. A new discrete Cucker-Smale flocking model under hierarchical leadership. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2587-2599. doi: 10.3934/dcdsb.2016062 |
[7] |
Jiu-Gang Dong, Seung-Yeal Ha, Doheon Kim. Interplay of time-delay and velocity alignment in the Cucker-Smale model on a general digraph. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5569-5596. doi: 10.3934/dcdsb.2019072 |
[8] |
Jan Haskovec, Ioannis Markou. Asymptotic flocking in the Cucker-Smale model with reaction-type delays in the non-oscillatory regime. Kinetic and Related Models, 2020, 13 (4) : 795-813. doi: 10.3934/krm.2020027 |
[9] |
Chiun-Chuan Chen, Seung-Yeal Ha, Xiongtao Zhang. The global well-posedness of the kinetic Cucker-Smale flocking model with chemotactic movements. Communications on Pure and Applied Analysis, 2018, 17 (2) : 505-538. doi: 10.3934/cpaa.2018028 |
[10] |
Jianfei Cheng, Xiao Wang, Yicheng Liu. Collision-avoidance and flocking in the Cucker–Smale-type model with a discontinuous controller. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1733-1748. doi: 10.3934/dcdss.2021169 |
[11] |
Ewa Girejko, Luís Machado, Agnieszka B. Malinowska, Natália Martins. On consensus in the Cucker–Smale type model on isolated time scales. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 77-89. doi: 10.3934/dcdss.2018005 |
[12] |
Martin Friesen, Oleksandr Kutoviy. Stochastic Cucker-Smale flocking dynamics of jump-type. Kinetic and Related Models, 2020, 13 (2) : 211-247. doi: 10.3934/krm.2020008 |
[13] |
Hyeong-Ohk Bae, Young-Pil Choi, Seung-Yeal Ha, Moon-Jin Kang. Asymptotic flocking dynamics of Cucker-Smale particles immersed in compressible fluids. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4419-4458. doi: 10.3934/dcds.2014.34.4419 |
[14] |
Agnieszka B. Malinowska, Tatiana Odzijewicz. Optimal control of the discrete-time fractional-order Cucker-Smale model. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 347-357. doi: 10.3934/dcdsb.2018023 |
[15] |
Young-Pil Choi, Seung-Yeal Ha, Jeongho Kim. Propagation of regularity and finite-time collisions for the thermomechanical Cucker-Smale model with a singular communication. Networks and Heterogeneous Media, 2018, 13 (3) : 379-407. doi: 10.3934/nhm.2018017 |
[16] |
Young-Pil Choi, Cristina Pignotti. Emergent behavior of Cucker-Smale model with normalized weights and distributed time delays. Networks and Heterogeneous Media, 2019, 14 (4) : 789-804. doi: 10.3934/nhm.2019032 |
[17] |
Yu-Jhe Huang, Zhong-Fu Huang, Jonq Juang, Yu-Hao Liang. Flocking of non-identical Cucker-Smale models on general coupling network. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 1111-1127. doi: 10.3934/dcdsb.2020155 |
[18] |
Young-Pil Choi, Samir Salem. Cucker-Smale flocking particles with multiplicative noises: Stochastic mean-field limit and phase transition. Kinetic and Related Models, 2019, 12 (3) : 573-592. doi: 10.3934/krm.2019023 |
[19] |
Seung-Yeal Ha, Doheon Kim, Weiyuan Zou. Slow flocking dynamics of the Cucker-Smale ensemble with a chemotactic movement in a temperature field. Kinetic and Related Models, 2020, 13 (4) : 759-793. doi: 10.3934/krm.2020026 |
[20] |
Zhisu Liu, Yicheng Liu, Xiang Li. Flocking and line-shaped spatial configuration to delayed Cucker-Smale models. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3693-3716. doi: 10.3934/dcdsb.2020253 |
2021 Impact Factor: 1.41
Tools
Metrics
Other articles
by authors
[Back to Top]