-
Previous Article
A study on the effects of disease caused death in a simple epidemic model
- PROC Home
- This Issue
-
Next Article
Noncompact manifolds with constant negative scalar curvature and singular solutions to semihnear elliptic equations
A subdifferential interpretation of crystalline motion under nonuniform driving force
1. | Department of Mathematics, Hokkaido University, Sapporo 060, Japan |
2. | Department of Mathematics, Hokkaido University, Sapporo 060-0810 |
[1] |
Eduard Feireisl, Dalibor Pražák. A stabilizing effect of a high-frequency driving force on the motion of a viscous, compressible, and heat conducting fluid. Discrete and Continuous Dynamical Systems - S, 2009, 2 (1) : 95-111. doi: 10.3934/dcdss.2009.2.95 |
[2] |
Tetsuya Ishiwata. Crystalline motion of spiral-shaped polygonal curves with a tip motion. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 53-62. doi: 10.3934/dcdss.2014.7.53 |
[3] |
Tetsuya Ishiwata. On spiral solutions to generalized crystalline motion with a rotating tip motion. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 881-888. doi: 10.3934/dcdss.2015.8.881 |
[4] |
Tetsuya Ishiwata. On the motion of polygonal curves with asymptotic lines by crystalline curvature flow with bulk effect. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 865-873. doi: 10.3934/dcdss.2011.4.865 |
[5] |
Luis Barreira, Claudia Valls. Regularity of center manifolds under nonuniform hyperbolicity. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 55-76. doi: 10.3934/dcds.2011.30.55 |
[6] |
Tetsuya Ishiwata. Motion of polygonal curved fronts by crystalline motion: v-shaped solutions and eventual monotonicity. Conference Publications, 2011, 2011 (Special) : 717-726. doi: 10.3934/proc.2011.2011.717 |
[7] |
Tetsuya Ishiwata, Shigetoshi Yazaki. A fast blow-up solution and degenerate pinching arising in an anisotropic crystalline motion. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2069-2090. doi: 10.3934/dcds.2014.34.2069 |
[8] |
Alessandro Fonda, Antonio J. Ureña. Periodic, subharmonic, and quasi-periodic oscillations under the action of a central force. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 169-192. doi: 10.3934/dcds.2011.29.169 |
[9] |
Ezio Di Costanzo, Marta Menci, Eleonora Messina, Roberto Natalini, Antonia Vecchio. A hybrid model of collective motion of discrete particles under alignment and continuum chemotaxis. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 443-472. doi: 10.3934/dcdsb.2019189 |
[10] |
Yong Hong Wu, B. Wiwatanapataphee. Modelling of turbulent flow and multi-phase heat transfer under electromagnetic force. Discrete and Continuous Dynamical Systems - B, 2007, 8 (3) : 695-706. doi: 10.3934/dcdsb.2007.8.695 |
[11] |
Petteri Piiroinen, Martin Simon. Probabilistic interpretation of the Calderón problem. Inverse Problems and Imaging, 2017, 11 (3) : 553-575. doi: 10.3934/ipi.2017026 |
[12] |
Heinz Schättler, Urszula Ledzewicz. Perturbation feedback control: A geometric interpretation. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 631-654. doi: 10.3934/naco.2012.2.631 |
[13] |
Bernard Ducomet, Šárka Nečasová. On the motion of rigid bodies in an incompressible or compressible viscous fluid under the action of gravitational forces. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1193-1213. doi: 10.3934/dcdss.2013.6.1193 |
[14] |
Luis Barreira, Claudia Valls. Growth rates and nonuniform hyperbolicity. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 509-528. doi: 10.3934/dcds.2008.22.509 |
[15] |
Luis Barreira, Claudia Valls. Nonuniform exponential dichotomies and admissibility. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 39-53. doi: 10.3934/dcds.2011.30.39 |
[16] |
Masahiro Kubo. Quasi-subdifferential operators and evolution equations. Conference Publications, 2013, 2013 (special) : 447-456. doi: 10.3934/proc.2013.2013.447 |
[17] |
Yang Kuang, Jef Huisman, James J. Elser. Stoichiometric Plant-Herbivore Models and Their Interpretation. Mathematical Biosciences & Engineering, 2004, 1 (2) : 215-222. doi: 10.3934/mbe.2004.1.215 |
[18] |
Luis Barreira, Claudia Valls. Delay equations and nonuniform exponential stability. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 219-223. doi: 10.3934/dcdss.2008.1.219 |
[19] |
Jana Rodriguez Hertz. Genericity of nonuniform hyperbolicity in dimension 3. Journal of Modern Dynamics, 2012, 6 (1) : 121-138. doi: 10.3934/jmd.2012.6.121 |
[20] |
Yakov Pesin. On the work of Dolgopyat on partial and nonuniform hyperbolicity. Journal of Modern Dynamics, 2010, 4 (2) : 227-241. doi: 10.3934/jmd.2010.4.227 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]